On the smoothness in the weighted Triebel-Lizorkin and Besov spaces via the continuous wavelet transform with rotations

被引:0
|
作者
Navarro, Jaime [1 ]
Cruz-Barriguete, Victor A. [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Ciencias Basicas, Av San Pablo Xalpa 180, Mexico City 02128, DF, Mexico
关键词
Continuous wavelet transform with rotations; Weighted Besov spaces; Weighted Triebel-Lizorkin spaces; Weak solution; Differential operator; CONVERGENCE;
D O I
10.1007/s11868-024-00595-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to show that if u is an element of W-m,W- p (R-n) is a weak solution of Qu = f where f is an element of X-p,k(r,q) (R-n), then u is an element of X-p,k(m+r,q) (R-n) with 1 < p, q < infinity, 0 < r < 1, k is a temperate weight function in the Hormander sense, Q = Sigma (|beta|<= m) c(beta)(partial derivative beta) is a linear partial differential operator of order m >= 0 with non-zero constant coefficients c(beta), and where X-p,X-k (r,q) (R-n) is either the weighted Triebel-Lizorkin or the weighted Besov space. The way to prove this result is based on the boundedness of the continuous wavelet transform with rotations.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Decomposition of Besov and Triebel-Lizorkin spaces on the sphere
    Narcowich, F.
    Petrushev, P.
    Ward, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) : 530 - 564
  • [22] Homogeneity Property of Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    Vybiral, Jan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [23] New bases for Triebel-Lizorkin and Besov spaces
    Kyriazis, G
    Petrushev, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 749 - 776
  • [24] Harmonic Besov and Triebel-Lizorkin Spaces on the Ball
    Ivanov, Kamen
    Petrushev, Pencho
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 1062 - 1096
  • [25] Trace Operators in Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (03): : 275 - 302
  • [26] POINTWISE MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
    JOHNSEN, J
    MATHEMATISCHE NACHRICHTEN, 1995, 175 : 85 - 133
  • [27] Besov and Triebel-Lizorkin spaces on Lie groups
    Bruno, Tommaso
    Peloso, Marco M.
    Vallarino, Maria
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 335 - 377
  • [28] On the construction of frames for Triebel-Lizorkin and Besov spaces
    Kyriazis, G
    Petrushev, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) : 1759 - 1770
  • [29] Tl theorem for Besov and Triebel-Lizorkin spaces
    DENG Donggao & HAN Yongsheng Department of Mathematics
    Department of Mathematics
    Science China Mathematics, 2005, (05) : 657 - 665
  • [30] Besov and Triebel-Lizorkin Capacity in Metric Spaces
    Karak, Nijjwal
    Mondal, Debarati
    MATHEMATICA SLOVACA, 2023, 73 (04) : 937 - 948