Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators

被引:0
|
作者
The Anh Bui
Xuan Thinh Duong
机构
[1] Macquarie University,Department of Mathematics
[2] University of Pedagogy,Department of Mathematics
关键词
Hermite operator; Besov space; Triebel–Lizorkin space; Molecular decomposition; 42B35; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the Hermite operator H=-Δ+|x|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=-\Delta +|x|^2$$\end{document} on the Euclidean space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}. The main aim of this article is to develop a theory of homogeneous and inhomogeneous Besov and Triebel–Lizorkin spaces associated to the Hermite operator. Our inhomogeneous Besov and Triebel–Lizorkin spaces are different from those introduced by Petrushev and Xu (J Fourier Anal Appl 14, 372–414 2008). As applications, we show the boundedness of negative powers and spectral multipliers of the Hermite operators on some appropriate Besov and Triebel–Lizorkin spaces.
引用
收藏
页码:405 / 448
页数:43
相关论文
共 50 条