Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces

被引:8
|
作者
Noi, Takahiro [1 ]
机构
[1] Chuo Univ, Grad Sch Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 1920393, Japan
关键词
BESSEL POTENTIAL SPACES; MAXIMAL OPERATOR; SMOOTHNESS;
D O I
10.1155/2012/361807
中图分类号
学科分类号
摘要
We will prove the duality and reflexivity of variable exponent Triebel-Lizorkin and Besov spaces. It was shown by many authors that variable exponent Triebel-Lizorkin spaces coincide with variable exponent Bessel potential spaces, Sobolev spaces, and Lebesgue spaces when appropriate indices are chosen. In consequence of the results, these variable exponent function spaces are shown to be reflexive.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Homogeneous variable exponent Besov and Triebel-Lizorkin spaces
    Almeida, Alexandre
    Diening, Lars
    Hasto, Peter
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1177 - 1190
  • [2] Herz type Besov and Triebel-Lizorkin spaces with variable exponent
    Shi, Chune
    Xu, Jingshi
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 907 - 921
  • [3] Herz type Besov and Triebel-Lizorkin spaces with variable exponent
    Chune Shi
    Jingshi Xu
    Frontiers of Mathematics in China, 2013, 8 : 907 - 921
  • [4] Variable exponent Herz type Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    Yang, Xiaodi
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (01) : 135 - 148
  • [5] Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
    Dong, Baohua
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [6] Variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 511 - 522
  • [7] Duality of Besov, Triebel-Lizorkin and Herz spaces with variable exponents
    Izuki M.
    Noi T.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (2): : 221 - 245
  • [8] On the duality of variable Triebel-Lizorkin spaces
    Drihem, Douadi
    COLLECTANEA MATHEMATICA, 2020, 71 (02) : 263 - 278
  • [9] Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    POSITIVITY, 2012, 16 (02) : 213 - 244
  • [10] Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure
    Pineda, Ebner
    Rodriguez, Luz
    Urbina, Wilfredo
    AIMS MATHEMATICS, 2023, 8 (11): : 27128 - 27150