Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces

被引:8
|
作者
Noi, Takahiro [1 ]
机构
[1] Chuo Univ, Grad Sch Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 1920393, Japan
关键词
BESSEL POTENTIAL SPACES; MAXIMAL OPERATOR; SMOOTHNESS;
D O I
10.1155/2012/361807
中图分类号
学科分类号
摘要
We will prove the duality and reflexivity of variable exponent Triebel-Lizorkin and Besov spaces. It was shown by many authors that variable exponent Triebel-Lizorkin spaces coincide with variable exponent Bessel potential spaces, Sobolev spaces, and Lebesgue spaces when appropriate indices are chosen. In consequence of the results, these variable exponent function spaces are shown to be reflexive.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Trace Operators in Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (03): : 275 - 302
  • [22] POINTWISE MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
    JOHNSEN, J
    MATHEMATISCHE NACHRICHTEN, 1995, 175 : 85 - 133
  • [23] Besov and Triebel-Lizorkin spaces on Lie groups
    Bruno, Tommaso
    Peloso, Marco M.
    Vallarino, Maria
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 335 - 377
  • [24] Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents
    Noi, Takahiro
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 341 - 404
  • [25] New Herz Type Besov and Triebel-Lizorkin Spaces with Variable Exponents
    Dong, Baohua
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [26] On the construction of frames for Triebel-Lizorkin and Besov spaces
    Kyriazis, G
    Petrushev, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) : 1759 - 1770
  • [27] 2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability
    Kempka, Henning
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (01): : 227 - 251
  • [28] Tl theorem for Besov and Triebel-Lizorkin spaces
    DENG Donggao & HAN Yongsheng Department of Mathematics
    Department of Mathematics
    Science China Mathematics, 2005, (05) : 657 - 665
  • [29] Besov and Triebel-Lizorkin Capacity in Metric Spaces
    Karak, Nijjwal
    Mondal, Debarati
    MATHEMATICA SLOVACA, 2023, 73 (04) : 937 - 948
  • [30] Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents
    Fu, Jingjing
    Xu, Jingshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) : 280 - 298