On the Parameterized Complexity of Reconfiguration Problems

被引:0
|
作者
Amer E. Mouawad
Naomi Nishimura
Venkatesh Raman
Narges Simjour
Akira Suzuki
机构
[1] University of Bergen,Department of Informatics
[2] University of Waterloo,David R. Cheriton School of Computer Science
[3] The Institute of Mathematical Sciences,Graduate School of Information Sciences
[4] Google Waterloo,undefined
[5] Tohoku University,undefined
[6] CREST,undefined
[7] JST,undefined
来源
Algorithmica | 2017年 / 78卷
关键词
Reconfiguration; Parameterized complexity; Solution space; Vertex cover; Hitting set;
D O I
暂无
中图分类号
学科分类号
摘要
We present the first results on the parameterized complexity of reconfiguration problems, where a reconfiguration variant of an optimization problem Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document} takes as input two feasible solutions S and T and determines if there is a sequence of reconfiguration steps, i.e. a reconfiguration sequence, that can be applied to transform S into T such that each step results in a feasible solution to Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}. For most of the results in this paper, S and T are sets of vertices of a given graph and a reconfiguration step adds or removes a vertex. Our study is motivated by results establishing that for many NP-hard problems, the classical complexity of reconfiguration is PSPACE-complete. We address the question for several important graph properties under two natural parameterizations: k, a bound on the size of solutions, and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, a bound on the length of reconfiguration sequences. Our first general result is an algorithmic paradigm, the reconfiguration kernel, used to obtain fixed-parameter tractable algorithms for reconfiguration variants of Vertex Cover and, more generally, Bounded Hitting Set and Feedback Vertex Set, all parameterized by k. In contrast, we show that reconfiguring Unbounded Hitting Set is W[2]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}. We also demonstrate the W[1]-hardness of reconfiguration variants of a large class of maximization problems parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}, and of their corresponding deletion problems parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}; in doing so, we show that there exist problems in FPT when parameterized by k, but whose reconfiguration variants are W[1]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}.
引用
收藏
页码:274 / 297
页数:23
相关论文
共 50 条
  • [41] Parameterized Complexity of Edge Interdiction Problems
    Guo, Jiong
    Shrestha, Yash Raj
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 166 - 178
  • [42] The Complexity of Induced Tree Reconfiguration Problems
    Wasa, Kunihiro
    Yamanaka, Katsuhisa
    Arimura, Hiroki
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, LATA 2016, 2016, 9618 : 330 - 342
  • [43] The Complexity of Induced Tree Reconfiguration Problems
    Wasa, Kunihiro
    Yamanaka, Katsuhisa
    Arimura, Hiroki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (03): : 464 - 469
  • [44] On the complexity of some colorful problems parameterized by treewidth
    Fellows, Michael R.
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Rosamond, Frances
    Saurabh, Saket
    Szeider, Stefan
    Thomassen, Carsten
    INFORMATION AND COMPUTATION, 2011, 209 (02) : 143 - 153
  • [45] Parameterized Complexity of Streaming Diameter and Connectivity Problems
    Oostveen, Jelle J.
    van Leeuwen, Erik Jan
    ALGORITHMICA, 2024, 86 (09) : 2885 - 2928
  • [46] Parameterized complexity of control problems in Maximin election
    Liu, Hong
    Zhu, Daming
    INFORMATION PROCESSING LETTERS, 2010, 110 (10) : 383 - 388
  • [47] Parameterized Complexity of Connected Induced Subgraph Problems
    Cai, Leizhen
    Ye, Junjie
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 219 - 230
  • [48] Parameterized complexity of even/odd subgraph problems
    Cai, Leizhen
    Yang, Boting
    JOURNAL OF DISCRETE ALGORITHMS, 2011, 9 (03) : 231 - 240
  • [49] On the Parameterized Complexity of Dynamic Problems with Connectivity Constraints
    Abu-Khzam, Faisal N.
    Egan, Judith
    Fellows, Michael R.
    Rosamond, Frances A.
    Shaw, Peter
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 625 - 636
  • [50] Parameterized complexity of cardinality constrained optimization problems
    Cai, Leizhen
    COMPUTER JOURNAL, 2008, 51 (01): : 102 - 121