On the Parameterized Complexity of Reconfiguration Problems

被引:0
|
作者
Amer E. Mouawad
Naomi Nishimura
Venkatesh Raman
Narges Simjour
Akira Suzuki
机构
[1] University of Bergen,Department of Informatics
[2] University of Waterloo,David R. Cheriton School of Computer Science
[3] The Institute of Mathematical Sciences,Graduate School of Information Sciences
[4] Google Waterloo,undefined
[5] Tohoku University,undefined
[6] CREST,undefined
[7] JST,undefined
来源
Algorithmica | 2017年 / 78卷
关键词
Reconfiguration; Parameterized complexity; Solution space; Vertex cover; Hitting set;
D O I
暂无
中图分类号
学科分类号
摘要
We present the first results on the parameterized complexity of reconfiguration problems, where a reconfiguration variant of an optimization problem Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document} takes as input two feasible solutions S and T and determines if there is a sequence of reconfiguration steps, i.e. a reconfiguration sequence, that can be applied to transform S into T such that each step results in a feasible solution to Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}. For most of the results in this paper, S and T are sets of vertices of a given graph and a reconfiguration step adds or removes a vertex. Our study is motivated by results establishing that for many NP-hard problems, the classical complexity of reconfiguration is PSPACE-complete. We address the question for several important graph properties under two natural parameterizations: k, a bound on the size of solutions, and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, a bound on the length of reconfiguration sequences. Our first general result is an algorithmic paradigm, the reconfiguration kernel, used to obtain fixed-parameter tractable algorithms for reconfiguration variants of Vertex Cover and, more generally, Bounded Hitting Set and Feedback Vertex Set, all parameterized by k. In contrast, we show that reconfiguring Unbounded Hitting Set is W[2]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}. We also demonstrate the W[1]-hardness of reconfiguration variants of a large class of maximization problems parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}, and of their corresponding deletion problems parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}; in doing so, we show that there exist problems in FPT when parameterized by k, but whose reconfiguration variants are W[1]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}.
引用
收藏
页码:274 / 297
页数:23
相关论文
共 50 条
  • [21] Parameterized Complexity of Directed Spanner Problems
    Fedor V. Fomin
    Petr A. Golovach
    William Lochet
    Pranabendu Misra
    Saket Saurabh
    Roohani Sharma
    Algorithmica, 2022, 84 : 2292 - 2308
  • [22] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 108 - 120
  • [23] Parameterized Complexity of Eulerian Deletion Problems
    Marek Cygan
    Dániel Marx
    Marcin Pilipczuk
    Michał Pilipczuk
    Ildikó Schlotter
    Algorithmica, 2014, 68 : 41 - 61
  • [24] Parameterized complexity of constraint satisfaction problems
    Marx, D
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 139 - 149
  • [25] Parameterized Complexity of Secluded Connectivity Problems
    Fedor V. Fomin
    Petr A. Golovach
    Nikolay Karpov
    Alexander S. Kulikov
    Theory of Computing Systems, 2017, 61 : 795 - 819
  • [26] Incremental Problems in the Parameterized Complexity Setting
    Mans, Bernard
    Mathieson, Luke
    THEORY OF COMPUTING SYSTEMS, 2017, 60 (01) : 3 - 19
  • [27] The parameterized complexity of maximality and minimality problems
    Chen, Yijia
    Flum, Joerg
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2006, 4169 : 25 - 37
  • [28] PARAMETERIZED COMPLEXITY FOR GRAPH LAYOUT PROBLEMS
    Serna, Maria
    Thilikos, Dimitrios M.
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2005, (86): : 41 - 65
  • [29] Parameterized complexity of constraint satisfaction problems
    Marx, D
    COMPUTATIONAL COMPLEXITY, 2005, 14 (02) : 153 - 183
  • [30] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 131 - +