On the Parameterized Complexity of Reconfiguration Problems

被引:0
|
作者
Amer E. Mouawad
Naomi Nishimura
Venkatesh Raman
Narges Simjour
Akira Suzuki
机构
[1] University of Bergen,Department of Informatics
[2] University of Waterloo,David R. Cheriton School of Computer Science
[3] The Institute of Mathematical Sciences,Graduate School of Information Sciences
[4] Google Waterloo,undefined
[5] Tohoku University,undefined
[6] CREST,undefined
[7] JST,undefined
来源
Algorithmica | 2017年 / 78卷
关键词
Reconfiguration; Parameterized complexity; Solution space; Vertex cover; Hitting set;
D O I
暂无
中图分类号
学科分类号
摘要
We present the first results on the parameterized complexity of reconfiguration problems, where a reconfiguration variant of an optimization problem Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document} takes as input two feasible solutions S and T and determines if there is a sequence of reconfiguration steps, i.e. a reconfiguration sequence, that can be applied to transform S into T such that each step results in a feasible solution to Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}. For most of the results in this paper, S and T are sets of vertices of a given graph and a reconfiguration step adds or removes a vertex. Our study is motivated by results establishing that for many NP-hard problems, the classical complexity of reconfiguration is PSPACE-complete. We address the question for several important graph properties under two natural parameterizations: k, a bound on the size of solutions, and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, a bound on the length of reconfiguration sequences. Our first general result is an algorithmic paradigm, the reconfiguration kernel, used to obtain fixed-parameter tractable algorithms for reconfiguration variants of Vertex Cover and, more generally, Bounded Hitting Set and Feedback Vertex Set, all parameterized by k. In contrast, we show that reconfiguring Unbounded Hitting Set is W[2]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}. We also demonstrate the W[1]-hardness of reconfiguration variants of a large class of maximization problems parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}, and of their corresponding deletion problems parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}; in doing so, we show that there exist problems in FPT when parameterized by k, but whose reconfiguration variants are W[1]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}.
引用
收藏
页码:274 / 297
页数:23
相关论文
共 50 条
  • [31] Parameterized Complexity of Directed Spanner Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lochet, William
    Misra, Pranabendu
    Saurabh, Saket
    Sharma, Roohani
    ALGORITHMICA, 2022, 84 (08) : 2292 - 2308
  • [32] Parameterized complexity of generalized domination problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 780 - 792
  • [33] Parameterized complexity of fair deletion problems
    Masarik, Tomas
    Toufar, Tomas
    DISCRETE APPLIED MATHEMATICS, 2020, 278 : 51 - 61
  • [34] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 314 - 336
  • [35] Parameterized Complexity of Generalized Domination Problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 133 - +
  • [36] Parameterized Complexity of Secluded Connectivity Problems
    Fomin, Fedor V.
    Golovach, Petr A.
    Karpov, Nikolay
    Kulikov, Alexander S.
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 795 - 819
  • [37] The parameterized complexity of maximality and minimality problems
    Chen, Yijia
    Flum, Joerg
    ANNALS OF PURE AND APPLIED LOGIC, 2008, 151 (01) : 22 - 61
  • [38] Parameterized complexity of constraint satisfaction problems
    Dániel Marx
    computational complexity, 2005, 14 : 153 - 183
  • [39] Incremental Problems in the Parameterized Complexity Setting
    Bernard Mans
    Luke Mathieson
    Theory of Computing Systems, 2017, 60 : 3 - 19
  • [40] Parameterized Complexity of Fair Deletion Problems
    Masarik, Tomas
    Toufar, Tomas
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 627 - 641