Parameterized Complexity of Edge Interdiction Problems

被引:0
|
作者
Guo, Jiong [1 ]
Shrestha, Yash Raj [1 ]
机构
[1] Univ Saarland, D-66123 Saarbrucken, Germany
来源
关键词
VITAL EDGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For an optimization problem on edge-weighted graphs, the corresponding interdiction problem can be formulated as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In an edge interdiction problem, every edge of the input graph is associated with an interdiction cost. The interdictor interdicts the graph by modifying the edges in the graph and the number of such modifications is bounded by the interdictor's budget. The evader then solves the given optimization problem on the modified graph. The action of the interdictor must impede the evader as much as possible. We study the parameterized complexity of edge interdiction problems related to minimum spanning tree, maximum matching, maximum flow and minimum maximal matching problems. These problems arise in different real world scenarios. We derive several fixed-parameter tractability and W[1]-hardness results for these interdiction problems with respect to various parameters. Hereby, we reveal close relation between edge interdiction problems and partial covering problems on bipartite graphs.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 50 条
  • [1] Extension of Some Edge Graph Problems: Standard and Parameterized Complexity
    Casel, Katrin
    Fernau, Henning
    Ghadikolaei, Mehdi Khosravian
    Monnot, Jerome
    Sikora, Florian
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2019, 2019, 11651 : 185 - 200
  • [2] Parameterized complexity of three edge contraction problems with degree constraints
    Rémy Belmonte
    Petr A. Golovach
    Pim van ’t Hof
    Daniël Paulusma
    Acta Informatica, 2014, 51 : 473 - 497
  • [3] Parameterized complexity of three edge contraction problems with degree constraints
    Belmonte, Remy
    Golovach, Petr A.
    van't Hof, Pim
    Paulusma, Daniel
    ACTA INFORMATICA, 2014, 51 (07) : 473 - 497
  • [4] Extension of some edge graph problems: Standard, parameterized and approximation complexity
    Casel, Katrin
    Fernau, Henning
    Ghadikolaei, Mehdi Khosravian
    Monnot, Jerome
    Sikora, Florian
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 183 - 201
  • [5] The parameterized complexity of counting problems
    Flum, J
    Grohe, M
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 538 - 547
  • [6] Counting Problems in Parameterized Complexity
    Zhang, Chihao
    Chen, Yijia
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 410 - 420
  • [7] The parameterized complexity of counting problems
    Flum, J
    Grohe, M
    SIAM JOURNAL ON COMPUTING, 2004, 33 (04) : 892 - 922
  • [8] On the Parameterized Complexity of Reconfiguration Problems
    Mouawad, Amer E.
    Nishimura, Naomi
    Raman, Venkatesh
    Simjour, Narges
    Suzuki, Akira
    ALGORITHMICA, 2017, 78 (01) : 274 - 297
  • [9] Counting Problems in Parameterized Complexity
    Chihao Zhang
    Yijia Chen
    Tsinghua Science and Technology, 2014, 19 (04) : 410 - 420
  • [10] Parameterized complexity of geometric problems
    Giannopoulos, Panos
    Knauer, Christian
    Whitesides, Sue
    COMPUTER JOURNAL, 2008, 51 (03): : 372 - 384