Parameterized Complexity of Edge Interdiction Problems

被引:0
|
作者
Guo, Jiong [1 ]
Shrestha, Yash Raj [1 ]
机构
[1] Univ Saarland, D-66123 Saarbrucken, Germany
来源
关键词
VITAL EDGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For an optimization problem on edge-weighted graphs, the corresponding interdiction problem can be formulated as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In an edge interdiction problem, every edge of the input graph is associated with an interdiction cost. The interdictor interdicts the graph by modifying the edges in the graph and the number of such modifications is bounded by the interdictor's budget. The evader then solves the given optimization problem on the modified graph. The action of the interdictor must impede the evader as much as possible. We study the parameterized complexity of edge interdiction problems related to minimum spanning tree, maximum matching, maximum flow and minimum maximal matching problems. These problems arise in different real world scenarios. We derive several fixed-parameter tractability and W[1]-hardness results for these interdiction problems with respect to various parameters. Hereby, we reveal close relation between edge interdiction problems and partial covering problems on bipartite graphs.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 50 条
  • [31] Parameterized Complexity of Maximum Edge Colorable Subgraph
    Akanksha Agrawal
    Madhumita Kundu
    Abhishek Sahu
    Saket Saurabh
    Prafullkumar Tale
    Algorithmica, 2022, 84 : 3075 - 3100
  • [32] Parameterized Complexity of Secluded Connectivity Problems
    Fomin, Fedor V.
    Golovach, Petr A.
    Karpov, Nikolay
    Kulikov, Alexander S.
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 795 - 819
  • [33] Parameterized Complexity of Generalized Domination Problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 133 - +
  • [34] A survey on the parameterized complexity of reconfiguration problems
    Bousquet, Nicolas
    Mouawad, Amer E.
    Nishimura, Naomi
    Siebertz, Sebastian
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [35] Parameterized Complexity of Maximum Edge Colorable Subgraph
    Agrawal, Akanksha
    Kundu, Madhumita
    Sahu, Abhishek
    Saurabh, Saket
    Tale, Prafullkumar
    ALGORITHMICA, 2022, 84 (10) : 3075 - 3100
  • [36] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 131 - +
  • [37] Parameterized Complexity of Directed Spanner Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lochet, William
    Misra, Pranabendu
    Saurabh, Saket
    Sharma, Roohani
    ALGORITHMICA, 2022, 84 (08) : 2292 - 2308
  • [38] Parameterized complexity of fair deletion problems
    Masarik, Tomas
    Toufar, Tomas
    DISCRETE APPLIED MATHEMATICS, 2020, 278 : 51 - 61
  • [39] Parameterized complexity of generalized domination problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 780 - 792
  • [40] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 314 - 336