Non-holonomic (r, s, q)-jets

被引:0
|
作者
Jiří M. Tomáš
机构
[1] Technical University Brno,Department of Physical and Applied Chemistry, Faculty of Chemistry
来源
Czechoslovak Mathematical Journal | 2006年 / 56卷
关键词
bundle functor; jet; non-holonomic jet; Weil bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the concept of an (r, s, q)-jet to the concept of a non-holonomic (r, s, q)-jet. We define the composition of such objects and introduce a bundle functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde J^{r,s,q} $$ \end{document} : ℱ ℳk,l × ℱ ℳ defined on the product category of (k, l)-dimensional fibered manifolds with local fibered isomorphisms and the category of fibered manifolds with fibered maps. We give the description of such functors from the point of view of the theory of Weil functors. Further, we introduce a bundle functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde J_1^{r,s,q} $$ \end{document} : 2−ℱ ℳk,l → ℱ ℳ defined on the category of 2-fibered manifolds with ℱ ℳk,l-underlying objects.
引用
收藏
页码:1131 / 1145
页数:14
相关论文
共 50 条
  • [1] Non-holonomic (r, s, q)-jets
    Tomas, Jiri M.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (04) : 1131 - 1145
  • [2] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [3] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [4] Hamilton’s principle and Hamilton’s equations with holonomic and non-holonomic constraints
    Earl Dowell
    Nonlinear Dynamics, 2017, 88 : 1093 - 1097
  • [5] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [6] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [7] On non-holonomic connexions
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299
  • [8] Hamilton's principle and Hamilton's equations with holonomic and non-holonomic constraints
    Dowell, Earl
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1093 - 1097
  • [9] Non-holonomic integrators
    Cortés, J
    Martínez, S
    NONLINEARITY, 2001, 14 (05) : 1365 - 1392
  • [10] Poisson's theorem in non-holonomic coordinates
    Dobronravov, VV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1944, 44 : 231 - 234