Non-holonomic integrators

被引:78
|
作者
Cortés, J [1 ]
Martínez, S [1 ]
机构
[1] CSIC, Inst Matemat & Fis Fundamental, Lab Dynam Syst Mech & Control, E-28006 Madrid, Spain
关键词
D O I
10.1088/0951-7715/14/5/322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a discretization of the Lagrange-d'Alembert principle for Lagrangian systems with non-holonomic constraints, which allows us to construct numerical integrators that approximate the continuous flow. We study the geometric invariance properties of the discrete flow which provide an explanation for the good performance of the proposed method. This is tested on two examples: a non-holonomic particle with a quadratic potential and a mobile robot with fixed orientation.
引用
收藏
页码:1365 / 1392
页数:28
相关论文
共 50 条
  • [1] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    [J]. Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [2] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [3] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    [J]. Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [4] On non-holonomic connexions
    Schouten, JA
    [J]. PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299
  • [5] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    [J]. REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [6] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    [J]. Letters in Mathematical Physics, 2008, 84 : 15 - 30
  • [7] On the model of non-holonomic billiard
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    [J]. Regular and Chaotic Dynamics, 2011, 16 : 653 - 662
  • [8] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    [J]. HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [10] Geometry of non-holonomic diffusion
    Hochgerner, Simon
    Ratiu, Tudor S.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) : 273 - 319