On the model of non-holonomic billiard

被引:0
|
作者
Alexey V. Borisov
Alexander A. Kilin
Ivan S. Mamaev
机构
[1] Udmurt State University,Institute of Computer Science
来源
关键词
billiard; impact; point map; nonintegrability; periodic solution; nonholonomic constraint; integral of motion; 34D20; 70E40; 37J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a new model of non-holonomic billiard that accounts for the intrinsic rotation of the billiard ball. This model is a limit case of the problem of rolling without slipping of a ball without slipping over a quadric surface. The billiards between two parallel walls and inside a circle are studied in detail. Using the three-dimensional-point-map technique, the non-integrability of the non-holonomic billiard within an ellipse is shown.
引用
收藏
页码:653 / 662
页数:9
相关论文
共 50 条
  • [1] On the Model of Non-holonomic Billiard
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 653 - 662
  • [2] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [3] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [4] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [5] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [6] On non-holonomic connexions
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299
  • [7] Non-holonomic integrators
    Cortés, J
    Martínez, S
    NONLINEARITY, 2001, 14 (05) : 1365 - 1392
  • [8] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [9] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    Letters in Mathematical Physics, 2008, 84 : 15 - 30
  • [10] Geometry of non-holonomic diffusion
    Hochgerner, Simon
    Ratiu, Tudor S.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) : 273 - 319