On the model of non-holonomic billiard

被引:0
|
作者
Alexey V. Borisov
Alexander A. Kilin
Ivan S. Mamaev
机构
[1] Udmurt State University,Institute of Computer Science
来源
关键词
billiard; impact; point map; nonintegrability; periodic solution; nonholonomic constraint; integral of motion; 34D20; 70E40; 37J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a new model of non-holonomic billiard that accounts for the intrinsic rotation of the billiard ball. This model is a limit case of the problem of rolling without slipping of a ball without slipping over a quadric surface. The billiards between two parallel walls and inside a circle are studied in detail. Using the three-dimensional-point-map technique, the non-integrability of the non-holonomic billiard within an ellipse is shown.
引用
收藏
页码:653 / 662
页数:9
相关论文
共 50 条
  • [31] On Hormander operators and non-holonomic geometry
    Greiner, Peter
    PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS, 2007, 52 : 1 - 25
  • [32] Variational non-holonomic systems in physics
    Czudková, L
    Musilová, J
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 131 - 140
  • [33] Design of a Non-Holonomic Spherical Wrist
    Callegari, M.
    Battistelli, M.
    Di Gregorio, R.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 81 (02) : 181 - 194
  • [34] Design of a Non-Holonomic Spherical Wrist
    M. Callegari
    M. Battistelli
    R. Di Gregorio
    Journal of Intelligent & Robotic Systems, 2016, 81 : 181 - 194
  • [35] NON-HOLONOMIC VARIETIES IN MOBILE REFERENCES
    KAVANTSO.NI
    COLLOQUIUM MATHEMATICUM, 1972, 26 : 93 - 108
  • [36] Quasivelocities and symmetries in non-holonomic systems
    Bloch, Anthony M.
    Marsden, Jerrold E.
    Zenkov, Dmitry V.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (02): : 187 - 222
  • [37] THE QUANTUM MECHANICS OF NON-HOLONOMIC SYSTEMS
    EDEN, RJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 205 (1083): : 583 - 595
  • [38] On the field method in non-holonomic mechanics
    Kovacic, I
    ACTA MECHANICA SINICA, 2005, 21 (02) : 192 - 196
  • [39] LAGRANGE EQUATIONS AND NON-HOLONOMIC SYSTEMS
    GONZALEZGASCON, F
    ANALES DE FISICA, 1975, 71 (04): : 286 - 291
  • [40] NON-HOLONOMIC TORSES OF THE SECOND KIND
    Onishuk, N. M.
    Tsokolova, O. V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2011, (13): : 31 - 43