Non-holonomic (r, s, q)-jets

被引:0
|
作者
Jiří M. Tomáš
机构
[1] Technical University Brno,Department of Physical and Applied Chemistry, Faculty of Chemistry
来源
Czechoslovak Mathematical Journal | 2006年 / 56卷
关键词
bundle functor; jet; non-holonomic jet; Weil bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the concept of an (r, s, q)-jet to the concept of a non-holonomic (r, s, q)-jet. We define the composition of such objects and introduce a bundle functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde J^{r,s,q} $$ \end{document} : ℱ ℳk,l × ℱ ℳ defined on the product category of (k, l)-dimensional fibered manifolds with local fibered isomorphisms and the category of fibered manifolds with fibered maps. We give the description of such functors from the point of view of the theory of Weil functors. Further, we introduce a bundle functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde J_1^{r,s,q} $$ \end{document} : 2−ℱ ℳk,l → ℱ ℳ defined on the category of 2-fibered manifolds with ℱ ℳk,l-underlying objects.
引用
收藏
页码:1131 / 1145
页数:14
相关论文
共 50 条
  • [41] On the field method in non-holonomic mechanics
    Kovacic, I
    ACTA MECHANICA SINICA, 2005, 21 (02) : 192 - 196
  • [42] LAGRANGE EQUATIONS AND NON-HOLONOMIC SYSTEMS
    GONZALEZGASCON, F
    ANALES DE FISICA, 1975, 71 (04): : 286 - 291
  • [43] NON-HOLONOMIC TORSES OF THE SECOND KIND
    Onishuk, N. M.
    Tsokolova, O. V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2011, (13): : 31 - 43
  • [44] Equations of motion of non-holonomic systems
    Borisov, A. V.
    Mamaev, I. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (06) : 1167 - 1169
  • [45] On the field method in non-holonomic mechanics
    Ivana Kovacic
    Acta Mechanica Sinica, 2005, 21 (02) : 192 - 196
  • [46] STABILITY OF EQUILIBRIUM IN NON-HOLONOMIC SYSTEMS
    KARAPETYAN, AV
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1975, 39 (06): : 1135 - 1140
  • [47] Non-holonomic dynamics and Poisson geometry
    Borisov, A. V.
    Mamaev, I. S.
    Tsiganov, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (03) : 481 - 538
  • [48] MECHANICS - On the general theory of holonomic and non-holonomic movement system
    Delassus, Et.
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1917, 164 (06): : 270 - 272
  • [49] A new classification of non-holonomic constraints
    Chen, B
    Wang, LS
    Chu, SS
    Chou, WT
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1958): : 631 - 642
  • [50] Elliptical trajectories for non-holonomic vehicles
    Bampi, F.
    Scalzo, A.
    Zaccaria, R.
    Zordan, C.
    2007 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2007, : 345 - +