Non-holonomic (r, s, q)-jets

被引:0
|
作者
Jiří M. Tomáš
机构
[1] Technical University Brno,Department of Physical and Applied Chemistry, Faculty of Chemistry
来源
Czechoslovak Mathematical Journal | 2006年 / 56卷
关键词
bundle functor; jet; non-holonomic jet; Weil bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the concept of an (r, s, q)-jet to the concept of a non-holonomic (r, s, q)-jet. We define the composition of such objects and introduce a bundle functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde J^{r,s,q} $$ \end{document} : ℱ ℳk,l × ℱ ℳ defined on the product category of (k, l)-dimensional fibered manifolds with local fibered isomorphisms and the category of fibered manifolds with fibered maps. We give the description of such functors from the point of view of the theory of Weil functors. Further, we introduce a bundle functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde J_1^{r,s,q} $$ \end{document} : 2−ℱ ℳk,l → ℱ ℳ defined on the category of 2-fibered manifolds with ℱ ℳk,l-underlying objects.
引用
收藏
页码:1131 / 1145
页数:14
相关论文
共 50 条
  • [21] On the Model of Non-holonomic Billiard
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 653 - 662
  • [22] On some non-holonomic sequences
    Gerhold, S
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [23] Geodesics in non-holonomic geometry
    Synge, JL
    MATHEMATISCHE ANNALEN, 1928, 99 : 738 - 751
  • [24] On generalized non-holonomic systems
    Balseiro, P.
    Solomin, J. E.
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (01) : 15 - 30
  • [25] Non-holonomic control III : Coherence protection by the quantum zeno effect and non-holonomic control
    Brion, E
    Akulin, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 80 - 90
  • [26] NON-HOLONOMIC ELASTIC-PLASTIC STATES OF A SUBSTANCE AND NON-HOLONOMIC CONDITIONS ON STRONG BREAKS
    VERVEIKO, ND
    NIKOLAEVSKII, VN
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1974, 38 (05): : 899 - 905
  • [27] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    INOSTROZA, ROR
    HADRONIC JOURNAL, 1984, 7 (05): : 1134 - 1157
  • [28] NON-HOLONOMIC W CONGRUENCES
    SHCHERBA.R
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (04): : 802 - &
  • [29] On a Holonomy Flag of Non-holonomic Distributions
    Malkovich, E. G.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (03) : 355 - 370
  • [30] On the geometry of non-holonomic Lagrangian systems
    deLeon, M
    deDiego, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) : 3389 - 3414