On some non-holonomic sequences

被引:0
|
作者
Gerhold, S [1 ]
机构
[1] Johannes Kepler Univ, Res Inst Symbol Computat, A-4040 Linz, Austria
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sequence of complex numbers is holonomic if it satisfies a linear recurrence with polynomial coefficients. A power series is holonomic if it satisfies a linear differential equation with polynomial coefficients, which is equivalent to its coefficient sequence being holonomic. It is well known that all algebraic power series are holonomic. We show that the analogous statement for sequences is false by proving that the sequence {rootn}(n) is not holonomic. In addition, we show that {n(n)}(n), the Lambert W function and {log n}(n) are not holonomic, where in the case of {log n}(n) we have to rely on an open conjecture from transcendental number theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [2] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [3] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [4] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [5] On non-holonomic connexions
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299
  • [6] Non-holonomic integrators
    Cortés, J
    Martínez, S
    NONLINEARITY, 2001, 14 (05) : 1365 - 1392
  • [7] SOME NOTES ON EQUILIBRIUM NONSTABILITY FOR NON-HOLONOMIC SYSTEMS
    BULATOVICH, RM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (04): : 57 - 60
  • [8] On the use of low-discrepancy sequences in non-holonomic motion planning
    Sánchez, A
    Zapata, R
    Lanzoni, C
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 3764 - 3769
  • [9] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [10] On the model of non-holonomic billiard
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 653 - 662