On some non-holonomic sequences

被引:0
|
作者
Gerhold, S [1 ]
机构
[1] Johannes Kepler Univ, Res Inst Symbol Computat, A-4040 Linz, Austria
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sequence of complex numbers is holonomic if it satisfies a linear recurrence with polynomial coefficients. A power series is holonomic if it satisfies a linear differential equation with polynomial coefficients, which is equivalent to its coefficient sequence being holonomic. It is well known that all algebraic power series are holonomic. We show that the analogous statement for sequences is false by proving that the sequence {rootn}(n) is not holonomic. In addition, we show that {n(n)}(n), the Lambert W function and {log n}(n) are not holonomic, where in the case of {log n}(n) we have to rely on an open conjecture from transcendental number theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Geodesics in non-holonomic geometry
    Synge, JL
    MATHEMATISCHE ANNALEN, 1928, 99 : 738 - 751
  • [22] On generalized non-holonomic systems
    Balseiro, P.
    Solomin, J. E.
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (01) : 15 - 30
  • [23] Non-holonomic control III : Coherence protection by the quantum zeno effect and non-holonomic control
    Brion, E
    Akulin, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 80 - 90
  • [24] NON-HOLONOMIC ELASTIC-PLASTIC STATES OF A SUBSTANCE AND NON-HOLONOMIC CONDITIONS ON STRONG BREAKS
    VERVEIKO, ND
    NIKOLAEVSKII, VN
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1974, 38 (05): : 899 - 905
  • [25] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    INOSTROZA, ROR
    HADRONIC JOURNAL, 1984, 7 (05): : 1134 - 1157
  • [26] NON-HOLONOMIC W CONGRUENCES
    SHCHERBA.R
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (04): : 802 - &
  • [27] On a Holonomy Flag of Non-holonomic Distributions
    Malkovich, E. G.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (03) : 355 - 370
  • [28] On the geometry of non-holonomic Lagrangian systems
    deLeon, M
    deDiego, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) : 3389 - 3414
  • [29] A unified approach to non-holonomic dynamics
    Bahar, LY
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2000, 35 (04) : 613 - 625
  • [30] EQUIVALENCE CLASSES OF NON-HOLONOMIC COORDINATES
    NOVOSIOLOV, VS
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1981, (02): : 82 - 85