On some non-holonomic sequences

被引:0
|
作者
Gerhold, S [1 ]
机构
[1] Johannes Kepler Univ, Res Inst Symbol Computat, A-4040 Linz, Austria
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sequence of complex numbers is holonomic if it satisfies a linear recurrence with polynomial coefficients. A power series is holonomic if it satisfies a linear differential equation with polynomial coefficients, which is equivalent to its coefficient sequence being holonomic. It is well known that all algebraic power series are holonomic. We show that the analogous statement for sequences is false by proving that the sequence {rootn}(n) is not holonomic. In addition, we show that {n(n)}(n), the Lambert W function and {log n}(n) are not holonomic, where in the case of {log n}(n) we have to rely on an open conjecture from transcendental number theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] On the integration methods of non-holonomic dynamics
    Mei, FX
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2000, 35 (02) : 229 - 238
  • [32] On Hormander operators and non-holonomic geometry
    Greiner, Peter
    PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS, 2007, 52 : 1 - 25
  • [33] Variational non-holonomic systems in physics
    Czudková, L
    Musilová, J
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 131 - 140
  • [34] Design of a Non-Holonomic Spherical Wrist
    Callegari, M.
    Battistelli, M.
    Di Gregorio, R.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 81 (02) : 181 - 194
  • [35] Design of a Non-Holonomic Spherical Wrist
    M. Callegari
    M. Battistelli
    R. Di Gregorio
    Journal of Intelligent & Robotic Systems, 2016, 81 : 181 - 194
  • [36] NON-HOLONOMIC VARIETIES IN MOBILE REFERENCES
    KAVANTSO.NI
    COLLOQUIUM MATHEMATICUM, 1972, 26 : 93 - 108
  • [37] Quasivelocities and symmetries in non-holonomic systems
    Bloch, Anthony M.
    Marsden, Jerrold E.
    Zenkov, Dmitry V.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (02): : 187 - 222
  • [38] THE QUANTUM MECHANICS OF NON-HOLONOMIC SYSTEMS
    EDEN, RJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 205 (1083): : 583 - 595
  • [39] On the field method in non-holonomic mechanics
    Kovacic, I
    ACTA MECHANICA SINICA, 2005, 21 (02) : 192 - 196
  • [40] LAGRANGE EQUATIONS AND NON-HOLONOMIC SYSTEMS
    GONZALEZGASCON, F
    ANALES DE FISICA, 1975, 71 (04): : 286 - 291