Gradient expansion technique for inhomogeneous, magnetized quark matter

被引:0
|
作者
Filippo Anzuini
Andrew Melatos
机构
[1] University of Melbourne,School of Physics
[2] University of Melbourne,Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A quark-magnetic Ginzburg–Landau (qHGL) gradient expansion of the free energy of two-flavor inhomogeneous quark matter in a magnetic field H is derived analytically. It can be applied away from the Lifshitz point, generalizing standard Ginzburg-Landau techniques. The thermodynamic potential is written as a sum of the thermal contribution, the non-thermal lowest Landau level contribution, and the non-thermal qHGL functional, which handles any arbitrary position-dependent periodic modulation of the chiral condensate as an input. The qHGL approximation has two main practical features: (1) it is fast to compute; (2) it applies to non-plane-wave modulations such as solitons even when the amplitude of the condensate and its gradients are large (unlike standard Ginzburg-Landau techniques). It agrees with the output of numerical techniques based on standard regularization schemes and reduces to known results at zero temperature (T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}) in benchmark studies. It is found that the region of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-T plane (where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the chemical potential) occupied by the inhomogeneous phase expands, as H increases and T decreases.
引用
收藏
相关论文
共 50 条
  • [41] Anisotropic pressure of magnetized quark matter with anomalous magnetic moment
    Chaudhuri, Nilanjan
    Ghosh, Snigdha
    Roy, Pradip
    Sarkar, Sourav
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [42] Medium effect on anisotropic surface tension of magnetized quark matter
    He, Yu-Ying
    Wen, Xin-Jian
    PHYSICAL REVIEW D, 2023, 107 (07)
  • [43] Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation
    Fogaca, D. A.
    Sanches Jr, S. M.
    Navarra, F. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 66 : 208 - 215
  • [44] Magnetized quark and strange quark matter in the spherical symmetric space–time admitting conformal motion
    C. Aktas
    İ. Yilmaz
    General Relativity and Gravitation, 2007, 39 : 849 - 862
  • [45] Inhomogeneous chiral condensates in three-flavor quark matter
    Carignano, Stefano
    Buballa, Michael
    PHYSICAL REVIEW D, 2020, 101 (01)
  • [46] Magnetized strange quark matter in a mass-density-dependent model
    侯佳荀
    彭光雄
    夏铖君
    徐建峰
    Chinese Physics C, 2015, 39 (01) : 49 - 55
  • [47] Heavy quarkonia in a baryon asymmetric strongly magnetized hot quark matter
    Khan, Salman Ahamad
    Hasan, Mujeeb
    Patra, Binoy Krishna
    NUCLEAR PHYSICS A, 2023, 1034
  • [48] Magnetized strange quark matter in a mass-density-dependent model
    Hou Jia-Xun
    Peng Guang-Xiong
    Xia Cheng-Jun
    Xu Jian-Feng
    CHINESE PHYSICS C, 2015, 39 (01)
  • [49] Neutrino energy and momentum emission from magnetized dense quark matter
    Ritesh Ghosh
    Igor A. Shovkovy
    Journal of High Energy Physics, 2025 (4)
  • [50] Weak decay constant of neutral pions in a hot and magnetized quark matter
    Fayazbakhsh, Sh.
    Sadooghi, N.
    PHYSICAL REVIEW D, 2013, 88 (06):