Gradient expansion technique for inhomogeneous, magnetized quark matter

被引:0
|
作者
Filippo Anzuini
Andrew Melatos
机构
[1] University of Melbourne,School of Physics
[2] University of Melbourne,Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A quark-magnetic Ginzburg–Landau (qHGL) gradient expansion of the free energy of two-flavor inhomogeneous quark matter in a magnetic field H is derived analytically. It can be applied away from the Lifshitz point, generalizing standard Ginzburg-Landau techniques. The thermodynamic potential is written as a sum of the thermal contribution, the non-thermal lowest Landau level contribution, and the non-thermal qHGL functional, which handles any arbitrary position-dependent periodic modulation of the chiral condensate as an input. The qHGL approximation has two main practical features: (1) it is fast to compute; (2) it applies to non-plane-wave modulations such as solitons even when the amplitude of the condensate and its gradients are large (unlike standard Ginzburg-Landau techniques). It agrees with the output of numerical techniques based on standard regularization schemes and reduces to known results at zero temperature (T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}) in benchmark studies. It is found that the region of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-T plane (where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the chemical potential) occupied by the inhomogeneous phase expands, as H increases and T decreases.
引用
收藏
相关论文
共 50 条
  • [21] Cold magnetized quark matter at finite density in a nonlocal chiral quark model
    Ferraris, S. A.
    Dumm, D. Gomez
    Grunfeld, A. G.
    Scoccola, N. N.
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (04):
  • [22] Effect of vector interaction on magnetized strange quark matter and strange quark star
    Kumari, Manisha
    Kumar, Arvind
    NUCLEAR PHYSICS A, 2022, 1022
  • [23] Bulk viscosity of interacting magnetized strange quark matter
    Jian-Feng Xu
    Nuclear Science and Techniques, 2021, 32 (10) : 95 - 103
  • [24] Cold magnetized quark matter at finite density in a nonlocal chiral quark model
    S. A. Ferraris
    D. Gómez Dumm
    A. G. Grunfeld
    N. N. Scoccola
    The European Physical Journal A, 2021, 57
  • [25] Spontaneous magnetization of quark matter in the inhomogeneous chiral phase
    Yoshiike, R.
    Nishiyama, K.
    Tatsumi, T.
    PHYSICS LETTERS B, 2015, 751 : 123 - 126
  • [26] NEUTRINO EMISSION IN INHOMOGENEOUS PION CONDENSED QUARK MATTER
    Huang, Xuguang
    Wang, Qun
    Zhuang, Pengfei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2008, 17 (09): : 1906 - 1916
  • [27] Variational approach to the inhomogeneous chiral phase in quark matter
    Karasawa, S.
    Tatsumi, T.
    PHYSICAL REVIEW D, 2015, 92 (11):
  • [28] Chiral phase transition of a dense, magnetized and rotating quark matter
    Mehr, S. M. A. Tabatabaee
    Taghinavaz, F.
    ANNALS OF PHYSICS, 2023, 454
  • [29] Multiple critical endpoints in magnetized three flavor quark matter
    Ferreira, Marcio
    Costa, Pedro
    Providencia, Constanca
    PHYSICAL REVIEW D, 2018, 97 (01)
  • [30] The role of asymptotic freedom for the pseudocritical temperature in magnetized quark matter
    Farias, R. L. S.
    Gomes, K. P.
    Krein, G.
    Pinto, M. B.
    XXXVII BRAZILIAN MEETING ON NUCLEAR PHYSICS, 2015, 630