Gradient expansion technique for inhomogeneous, magnetized quark matter

被引:0
|
作者
Filippo Anzuini
Andrew Melatos
机构
[1] University of Melbourne,School of Physics
[2] University of Melbourne,Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A quark-magnetic Ginzburg–Landau (qHGL) gradient expansion of the free energy of two-flavor inhomogeneous quark matter in a magnetic field H is derived analytically. It can be applied away from the Lifshitz point, generalizing standard Ginzburg-Landau techniques. The thermodynamic potential is written as a sum of the thermal contribution, the non-thermal lowest Landau level contribution, and the non-thermal qHGL functional, which handles any arbitrary position-dependent periodic modulation of the chiral condensate as an input. The qHGL approximation has two main practical features: (1) it is fast to compute; (2) it applies to non-plane-wave modulations such as solitons even when the amplitude of the condensate and its gradients are large (unlike standard Ginzburg-Landau techniques). It agrees with the output of numerical techniques based on standard regularization schemes and reduces to known results at zero temperature (T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}) in benchmark studies. It is found that the region of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-T plane (where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the chemical potential) occupied by the inhomogeneous phase expands, as H increases and T decreases.
引用
收藏
相关论文
共 50 条
  • [11] Inhomogeneous quark condensate in compressed Skyrmion matter
    Harada, Masayasu
    Lee, Hyun Kyu
    Ma, Yong-Liang
    Rho, Mannque
    PHYSICAL REVIEW D, 2015, 91 (09):
  • [12] Anisotropic electrical conductivity of magnetized hot quark matter
    Bandyopadhyay, Aritra
    Ghosh, Sabyasachi
    Farias, Ricardo L. S.
    Dey, Jayanta
    Krein, Gastao
    PHYSICAL REVIEW D, 2020, 102 (11)
  • [13] Gradient expansion, curvature perturbations, and magnetized plasmas
    Giovannini, Massimo
    Rezaei, Zahra
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [14] Properties of neutral mesons in a hot and magnetized quark matter
    Fayazbakhsh, Sh.
    Sadeghian, S.
    Sadooghi, N.
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [15] Impact of a magnetic field on the thermodynamics of magnetized quark matter
    Farias, R. L. S.
    Timoteo, V. S.
    Avancini, S.
    Pinto, M. B.
    Krein, G.
    XIII INTERNATIONAL WORKSHOP ON HADRON PHYSICS, SECTIONS 1-5, 2016, 706
  • [16] Neutral meson properties in hot and magnetized quark matter
    Farias, R. L. S.
    Avancini, S. S.
    Tavares, W. R.
    XLI BRAZILIAN MEETING ON NUCLEAR PHYSICS (RTFNB), 2019, 1291
  • [17] Bulk viscosity of interacting magnetized strange quark matter
    Jian-Feng Xu
    Nuclear Science and Techniques, 2021, 32
  • [18] Surface tension of highly magnetized degenerate quark matter
    Lugones, G.
    Grunfeld, A. G.
    PHYSICAL REVIEW C, 2017, 95 (01)
  • [19] Bulk viscosity of interacting magnetized strange quark matter
    Xu, Jian-Feng
    NUCLEAR SCIENCE AND TECHNIQUES, 2021, 32 (10)
  • [20] Influence of a repulsive vector coupling in magnetized quark matter
    Denke, Robson Z.
    Pinto, Marcus Benghi
    PHYSICAL REVIEW D, 2013, 88 (05):