Gradient expansion technique for inhomogeneous, magnetized quark matter

被引:0
|
作者
Filippo Anzuini
Andrew Melatos
机构
[1] University of Melbourne,School of Physics
[2] University of Melbourne,Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A quark-magnetic Ginzburg–Landau (qHGL) gradient expansion of the free energy of two-flavor inhomogeneous quark matter in a magnetic field H is derived analytically. It can be applied away from the Lifshitz point, generalizing standard Ginzburg-Landau techniques. The thermodynamic potential is written as a sum of the thermal contribution, the non-thermal lowest Landau level contribution, and the non-thermal qHGL functional, which handles any arbitrary position-dependent periodic modulation of the chiral condensate as an input. The qHGL approximation has two main practical features: (1) it is fast to compute; (2) it applies to non-plane-wave modulations such as solitons even when the amplitude of the condensate and its gradients are large (unlike standard Ginzburg-Landau techniques). It agrees with the output of numerical techniques based on standard regularization schemes and reduces to known results at zero temperature (T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}) in benchmark studies. It is found that the region of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-T plane (where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the chemical potential) occupied by the inhomogeneous phase expands, as H increases and T decreases.
引用
收藏
相关论文
共 50 条
  • [31] Landau quantization and spin polarization of cold magnetized quark matter
    陆振烟
    徐建峰
    温新建
    彭光雄
    Marco Ruggieri
    Chinese Physics C, 2022, (06) : 168 - 177
  • [32] Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter
    Farias, R. L. S.
    Gomes, K. P.
    Krein, G.
    Pinto, M. B.
    PHYSICAL REVIEW C, 2014, 90 (02):
  • [33] Detection of magnetized quark-nuggets, a candidate for dark matter
    J. Pace VanDevender
    Aaron P. VanDevender
    T. Sloan
    Criss Swaim
    Peter Wilson
    Robert. G. Schmitt
    Rinat Zakirov
    Josh Blum
    James L. Cross
    Niall McGinley
    Scientific Reports, 7
  • [34] Detection of magnetized quark-nuggets, a candidate for dark matter
    VanDevender, J. Pace
    VanDevender, Aaron P.
    Sloan, T.
    Swaim, Criss
    Wilson, Peter
    Schmitt, Robert. G.
    Zakirov, Rinat
    Blum, Josh
    Cross, James L.
    McGinley, Niall
    SCIENTIFIC REPORTS, 2017, 7
  • [35] Magnetized quark matter with a magnetic-field dependent coupling
    Li, Chang-Feng
    Yang, Li
    Wen, Xin-Jian
    Peng, Guang-Xiong
    PHYSICAL REVIEW D, 2016, 93 (05)
  • [36] Phase structure of cold magnetized color superconducting quark matter
    Allen, P. G.
    Grunfeld, A. G.
    Scoccola, N. N.
    XIII INTERNATIONAL WORKSHOP ON HADRON PHYSICS, SECTIONS 1-5, 2016, 706
  • [37] Landau quantization and spin polarization of cold magnetized quark matter
    Lu, Zhen-Yan
    Xu, Jian-Feng
    Wen, Xin-Jian
    Peng, Guang-Xiong
    Ruggieri, Marco
    CHINESE PHYSICS C, 2022, 46 (06)
  • [38] Quark matter contribution to the heat capacity of magnetized neutron stars
    Ferrer, E. J.
    de la Incera, V
    Sanson, P.
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [39] Net baryon-number fluctuations in magnetized quark matter
    Ferreira, Marcio
    Costa, Pedro
    Providencia, Constanca
    PHYSICAL REVIEW D, 2018, 98 (03)
  • [40] Does magnetized strange quark matter exist in the early universe?
    Kalkan, Sinem
    Aktas, Can
    Ayguen, Sezgin
    MODERN PHYSICS LETTERS A, 2022, 37 (39-40)