Gradient expansion technique for inhomogeneous, magnetized quark matter

被引:0
|
作者
Filippo Anzuini
Andrew Melatos
机构
[1] University of Melbourne,School of Physics
[2] University of Melbourne,Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A quark-magnetic Ginzburg–Landau (qHGL) gradient expansion of the free energy of two-flavor inhomogeneous quark matter in a magnetic field H is derived analytically. It can be applied away from the Lifshitz point, generalizing standard Ginzburg-Landau techniques. The thermodynamic potential is written as a sum of the thermal contribution, the non-thermal lowest Landau level contribution, and the non-thermal qHGL functional, which handles any arbitrary position-dependent periodic modulation of the chiral condensate as an input. The qHGL approximation has two main practical features: (1) it is fast to compute; (2) it applies to non-plane-wave modulations such as solitons even when the amplitude of the condensate and its gradients are large (unlike standard Ginzburg-Landau techniques). It agrees with the output of numerical techniques based on standard regularization schemes and reduces to known results at zero temperature (T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}) in benchmark studies. It is found that the region of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-T plane (where μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the chemical potential) occupied by the inhomogeneous phase expands, as H increases and T decreases.
引用
收藏
相关论文
共 50 条
  • [1] Gradient expansion technique for inhomogeneous, magnetized quark matter
    Anzuini, Filippo
    Melatos, Andrew
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (07):
  • [2] Magnetized strange quark matter and magnetized strange quark stars
    Felipe, R. Gonzalez
    Martinez, A. Perez
    Rojas, H. Perez
    Orsaria, M.
    PHYSICAL REVIEW C, 2008, 77 (01):
  • [3] Anisotropy of magnetized quark matter
    Goswami, Kangkan
    Sahu, Dushmanta
    Dey, Jayanta
    Sahoo, Raghunath
    Stock, Reinhard
    PHYSICAL REVIEW D, 2024, 109 (07)
  • [4] Waves in magnetized quark matter
    Fogaca, D. A.
    Sanches, S. M., Jr.
    Navarra, F. S.
    NUCLEAR PHYSICS A, 2018, 973 : 48 - 59
  • [5] Meson properties in magnetized quark matter
    Wang, Ziyue
    Zhuang, Pengfei
    PHYSICAL REVIEW D, 2018, 97 (03)
  • [6] Surface tension of magnetized quark matter
    Garcia, Andre F.
    Pinto, Marcus Benghi
    PHYSICAL REVIEW C, 2013, 88 (02):
  • [7] Highly magnetized quark matter in the chiral limit
    Ferraris, S. A.
    Carlomagno, J. P.
    Grunfeld, A. G.
    ASTRONOMISCHE NACHRICHTEN, 2024, 345 (2-3)
  • [8] Anisotropy in Magnetized Quark Matter in the Chiral Limit
    Ferraris, Sebastian Alberto
    Carlomagno, Juan Pablo
    Contrera, Gustavo Anibal Gabriel
    Grunfeld, Ana Gabriela
    ASTRONOMISCHE NACHRICHTEN, 2025,
  • [9] Magnetized strange quark matter in a quasiparticle description
    Wen, Xin-Jian
    Su, Shou-Zheng
    Yang, Dong-Hong
    Peng, Guang-Xiong
    PHYSICAL REVIEW D, 2012, 86 (03):
  • [10] Anisotropy in the equation of state of magnetized quark matter
    Menezes, Debora P.
    Pinto, Marcus B.
    Providencia, Constanca
    PHYSICAL REVIEW C, 2015, 91 (06):