An extension of the Hoeffding inequality to unbounded random variables

被引:0
|
作者
V. Bentkus
机构
[1] Institute of Mathematics and Informatics,
来源
关键词
Hoeffding’s inequalities; probabilities of large deviations; bounds for tail probabilities; bounded and unbounded random variables; supermartingales;
D O I
暂无
中图分类号
学科分类号
摘要
Let S = X1 + ⋯ + Xn be a sum of independent random variables such that 0 ⩽ Xk ⩽ 1 for all k. Write p = E S/n and q = 1 − p. Let 0 < t < q. In this paper, we extend the Hoeffding inequality [16, Theorem 1] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{P}\left\{ {S \geqslant nt + np} \right\} \leqslant H^n \left( {t,p} \right), {\rm H}\left( {t,p} \right) = \left( {\frac{p} {{p + t}}} \right)^{p + t} \left( {\frac{q} {{q - t}}} \right)^{q - t} , $$\end{document}, to the case where Xk are unbounded positive random variables. Our inequalities reduce to the Hoeffding inequality if 0 ⩽ Xk ⩽ 1. Our conditions are Xk ⩾ 0 and E S < ∞. We also provide improvements comparable with the inequalities of Bentkus [5]. The independence of Xk can be replaced by supermartingale-type assumptions. Our methods can be extended to prove counterparts of other inequalities of Hoeffding [16] and Bentkus [5].
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条
  • [31] Recurring Mean Inequality of Random Variables
    Mingjin Wang
    Journal of Inequalities and Applications, 2008
  • [32] Fano's Inequality for Random Variables
    Gerchinovitz, Sebastien
    Menard, Pierre
    Stoltz, Gilles
    STATISTICAL SCIENCE, 2020, 35 (02) : 178 - 201
  • [33] An entropy inequality for symmetric random variables
    Hao, Jing
    Jog, Varun
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1600 - 1604
  • [34] AN INEQUALITY FOR SUMS OF INDEPENDENT RANDOM VARIABLES
    Offord, A. C.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1945, 48 : 467 - 477
  • [35] Recurring mean inequality of random variables
    Wang, Mingjin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [36] On the exponential inequality for acceptable random variables
    Wang, Yuebao
    Li, Yawei
    Gao, Qingwu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [37] A maximal inequality for dependent random variables
    da Silva, Joao Lita
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [38] Exponential inequality for associated random variables
    Ioannides, DA
    Roussas, GG
    STATISTICS & PROBABILITY LETTERS, 1999, 42 (04) : 423 - 431
  • [39] Probability Inequalities for Sums of Independent Unbounded Random Variables
    Di-xin Zhang
    Zhi-cheng Wang
    Applied Mathematics and Mechanics, 2001, 22 : 597 - 601
  • [40] Preference for equivalent random variables: A price for unbounded utilities
    Seidenfeld, Teddy
    Schervish, Mark J.
    Kadane, Joseph B.
    JOURNAL OF MATHEMATICAL ECONOMICS, 2009, 45 (5-6) : 329 - 340