An extension of the Hoeffding inequality to unbounded random variables

被引:0
|
作者
V. Bentkus
机构
[1] Institute of Mathematics and Informatics,
来源
关键词
Hoeffding’s inequalities; probabilities of large deviations; bounds for tail probabilities; bounded and unbounded random variables; supermartingales;
D O I
暂无
中图分类号
学科分类号
摘要
Let S = X1 + ⋯ + Xn be a sum of independent random variables such that 0 ⩽ Xk ⩽ 1 for all k. Write p = E S/n and q = 1 − p. Let 0 < t < q. In this paper, we extend the Hoeffding inequality [16, Theorem 1] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{P}\left\{ {S \geqslant nt + np} \right\} \leqslant H^n \left( {t,p} \right), {\rm H}\left( {t,p} \right) = \left( {\frac{p} {{p + t}}} \right)^{p + t} \left( {\frac{q} {{q - t}}} \right)^{q - t} , $$\end{document}, to the case where Xk are unbounded positive random variables. Our inequalities reduce to the Hoeffding inequality if 0 ⩽ Xk ⩽ 1. Our conditions are Xk ⩾ 0 and E S < ∞. We also provide improvements comparable with the inequalities of Bentkus [5]. The independence of Xk can be replaced by supermartingale-type assumptions. Our methods can be extended to prove counterparts of other inequalities of Hoeffding [16] and Bentkus [5].
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条
  • [21] On the equivalence of conglomerability and disintegrability for unbounded random variables
    Mark J. Schervish
    Teddy Seidenfeld
    Joseph B. Kadane
    Statistical Methods & Applications, 2014, 23 : 501 - 518
  • [22] Hoeffding's inequality for supermartingales
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (10) : 3545 - 3559
  • [23] A refinement of Hoeffding's inequality
    From, Steven G.
    Swift, Andrew W.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (05) : 975 - 981
  • [24] A GENERAL HOEFFDING TYPE INEQUALITY
    RESSEL, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (02): : 223 - 235
  • [25] A Hoeffding inequality for Markov chains
    Rao, Shravas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [26] On the Bennett-Hoeffding inequality
    Pinelis, Iosif
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01): : 15 - 27
  • [27] Stable Polynomials and Sums of Dependent Bernoulli Random Variables: Application to Hoeffding Inequalities
    Hazar Ennafti
    Sana Louhichi
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 919 - 927
  • [28] Stable Polynomials and Sums of Dependent Bernoulli Random Variables: Application to Hoeffding Inequalities
    Ennafti, Hazar
    Louhichi, Sana
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (03) : 919 - 927
  • [29] An Exponential Inequality for Symmetric Random Variables
    Cerf, Raphael
    Gorny, Matthias
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (08): : 786 - 789
  • [30] On the exponential inequality for acceptable random variables
    Yuebao Wang
    Yawei Li
    Qingwu Gao
    Journal of Inequalities and Applications, 2011