An extension of the Hoeffding inequality to unbounded random variables

被引:0
|
作者
V. Bentkus
机构
[1] Institute of Mathematics and Informatics,
来源
关键词
Hoeffding’s inequalities; probabilities of large deviations; bounds for tail probabilities; bounded and unbounded random variables; supermartingales;
D O I
暂无
中图分类号
学科分类号
摘要
Let S = X1 + ⋯ + Xn be a sum of independent random variables such that 0 ⩽ Xk ⩽ 1 for all k. Write p = E S/n and q = 1 − p. Let 0 < t < q. In this paper, we extend the Hoeffding inequality [16, Theorem 1] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{P}\left\{ {S \geqslant nt + np} \right\} \leqslant H^n \left( {t,p} \right), {\rm H}\left( {t,p} \right) = \left( {\frac{p} {{p + t}}} \right)^{p + t} \left( {\frac{q} {{q - t}}} \right)^{q - t} , $$\end{document}, to the case where Xk are unbounded positive random variables. Our inequalities reduce to the Hoeffding inequality if 0 ⩽ Xk ⩽ 1. Our conditions are Xk ⩾ 0 and E S < ∞. We also provide improvements comparable with the inequalities of Bentkus [5]. The independence of Xk can be replaced by supermartingale-type assumptions. Our methods can be extended to prove counterparts of other inequalities of Hoeffding [16] and Bentkus [5].
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条
  • [11] Extended Acceptable Random Variables and Hoeffding Inequalities
    Elham Soufiani
    Lobachevskii Journal of Mathematics, 2023, 44 : 4849 - 4864
  • [12] A Hoeffding-Azuma Type Inequality for Random Processes
    Hasanov, Mahir
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [13] ON AN INEQUALITY OF HOEFFDING
    ROSEN, B
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02): : 382 - &
  • [14] Hoeffding and Bernstein inequalities for weighted sums of exchangeable random variables
    Barber, Rina Foygel
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
  • [15] Lower previsions for unbounded random variables
    Troffaes, MCM
    de Cooman, G
    SOFT METHODS IN PROBABILITY, STATISTICS AND DATA ANALYSIS, 2002, : 146 - 155
  • [16] DELOCALIZATION FOR RANDOM LANDAU HAMILTONIANS WITH UNBOUNDED RANDOM VARIABLES
    Germinet, Francois
    Klein, Abel
    Mandy, Benoit
    SPECTRAL AND SCATTERING THEORY FOR QUANTUM MAGNETIC SYSTEMS, 2008, 500 : 87 - +
  • [17] AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES
    MALLOWS, CL
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (03): : 1080 - &
  • [18] The mean inequality of random variables
    Wang, MJ
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (04): : 755 - 763
  • [20] On the equivalence of conglomerability and disintegrability for unbounded random variables
    Schervish, Mark J.
    Seidenfeld, Teddy
    Kadane, Joseph B.
    STATISTICAL METHODS AND APPLICATIONS, 2014, 23 (04): : 501 - 518