An entropy inequality for symmetric random variables

被引:0
|
作者
Hao, Jing [1 ]
Jog, Varun [2 ]
机构
[1] Univ Wisconsin, Dept Math, 1415 Engn Dr, Madison, WI 53706 USA
[2] Univ Wisconsin, Elect & Comp Engn, 1415 Engn Dr, Madison, WI 53706 USA
关键词
POWER INEQUALITY; MONOTONICITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We establish a lower bound on the entropy of weighted sums of (possibly dependent) random variables (X-1, X-2, ..., X-n) possessing a symmetric joint distribution. Our lower bound is in terms of the joint entropy of (X-1, X-2, ..., X-n). We show that for n >= 3, the lower bound is tight if and only if X-i's are i.i.d. Gaussian random variables. For n = 2 there are numerous other cases of equality apart from i.i.d. Gaussians, which we completely characterize. Going beyond sums, we also present an inequality for certain linear transformations of (X-1 ,..., X-n). Our primary technical contribution lies in the analysis of the equality cases, and our approach relies on the geometry and the symmetry of the problem.
引用
收藏
页码:1600 / 1604
页数:5
相关论文
共 50 条
  • [1] An Exponential Inequality for Symmetric Random Variables
    Cerf, Raphael
    Gorny, Matthias
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (08): : 786 - 789
  • [2] An extension of entropy power inequality for dependent random variables
    Asgari, Fatemeh
    Alamatsaz, Mohammad Hossein
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (13) : 4358 - 4369
  • [3] Entropy power inequality for a family of discrete random variables
    Sharma, Naresh
    Das, Smarajit
    Muthukrishnan, Siddharth
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [4] A probabilistic inequality for sums of bounded symmetric independent random variables
    Mushtari D.H.
    [J]. Journal of Mathematical Sciences, 1997, 84 (3) : 1125 - 1127
  • [5] A New Entropy Power Inequality for Integer-Valued Random Variables
    Haghighatshoar, Saeid
    Abbe, Emmanuel
    Telatar, I. Emre
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 3787 - 3796
  • [6] A New Entropy Power Inequality for Integer-valued Random Variables
    Haghighatshoar, Saeid
    Abbe, Emmanuel
    Telatar, Emre
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 589 - +
  • [7] Maximum entropy for sums of symmetric and bounded random variables: A short derivation
    Yu, Yaming
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) : 1818 - 1819
  • [8] Symmetric random variables
    Chapman, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (07): : 670 - 670
  • [9] A SYMMETRIC INEQUALITY IN 3 VARIABLES
    FUKUTA, J
    PELLING, MJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (02): : 138 - 140
  • [10] Renyi Entropy and Variance Comparison for Symmetric Log-Concave Random Variables
    Bialobrzeski, Maciej
    Nayar, Piotr
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 3431 - 3438