Tangential Center Problem for a Family of Non-generic Hamiltonians

被引:0
|
作者
Jessie Pontigo-Herrera
机构
[1] Universidad Nacional Autónoma de México (UNAM),Instituto de Matemáticas
[2] Université de Bourgogne,Institut de Mathématiques de Bourgogne, U.M.R. 5584 du C.N.R.S.
关键词
Abelian integrals; Tangential center problem; Monodromy; 34M35; 34C08; 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form F=∏fj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F=\prod f_{j}$\end{document}, where fj are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.
引用
下载
收藏
页码:597 / 622
页数:25
相关论文
共 50 条
  • [1] Tangential Center Problem for a Family of Non-generic Hamiltonians
    Pontigo-Herrera, Jessie
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (03) : 597 - 622
  • [2] KIDs are non-generic
    Beig, R
    Chrusciel, PT
    Schoen, R
    ANNALES HENRI POINCARE, 2005, 6 (01): : 155 - 194
  • [3] NON-GENERIC CUSPS
    Misiurewicz, Michal
    Rodrigues, Ana
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3553 - 3572
  • [4] KIDs are Non-Generic
    Robert Beig
    Piotr T. Chruściel
    Richard Schoen
    Annales Henri Poincaré, 2005, 6 : 155 - 194
  • [5] GENERIC AND NON-GENERIC BIFURCATION FOR THE VONKARMAN EQUATIONS
    VANDERBAUWHEDE, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (03) : 550 - 573
  • [6] Asymptotic expansions for a family of non-generic canards using parametric representation
    Qin, Bo-Wei
    Chung, Kwok-Wai
    Algaba, Antonio
    Rodriguez-Luis, Alejandro J.
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [7] A non-generic real incompatible with 0(#)
    Stanley, MC
    ANNALS OF PURE AND APPLIED LOGIC, 1997, 85 (02) : 157 - 192
  • [8] Notes on Non-Generic Isomonodromy Deformations
    Guzzetti, Davide
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [9] Generic and non-generic cubic-to-monoclinic transitions and their twins
    Pitteri, M
    Zanzotto, G
    ACTA MATERIALIA, 1998, 46 (01) : 225 - 237
  • [10] Abelian Integrals and Non-generic Turning Points
    Huzak, Renato
    Rojas, David
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)