Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection

被引:0
|
作者
Martin Sundermeyer
Zoltan-Csaba Marton
Maximilian Durner
Rudolph Triebel
机构
[1] German Aerospace Center (DLR),
[2] Technical University of Munich,undefined
来源
关键词
6D object detection; Pose estimation; Domain randomization; Autoencoder; Synthetic data; Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a real-time RGB-based pipeline for object detection and 6D pose estimation. Our novel 3D orientation estimation is based on a variant of the Denoising Autoencoder that is trained on simulated views of a 3D model using Domain Randomization. This so-called Augmented Autoencoder has several advantages over existing methods: It does not require real, pose-annotated training data, generalizes to various test sensors and inherently handles object and view symmetries. Instead of learning an explicit mapping from input images to object poses, it provides an implicit representation of object orientations defined by samples in a latent space. Our pipeline achieves state-of-the-art performance on the T-LESS dataset both in the RGB and RGB-D domain. We also evaluate on the LineMOD dataset where we can compete with other synthetically trained approaches. We further increase performance by correcting 3D orientation estimates to account for perspective errors when the object deviates from the image center and show extended results. Our code is available here https://github.com/DLR-RM/AugmentedAutoencoder.
引用
收藏
页码:714 / 729
页数:15
相关论文
共 50 条
  • [1] Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection
    Sundermeyer, Martin
    Marton, Zoltan-Csaba
    Durner, Maximilian
    Triebel, Rudolph
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (03) : 714 - 729
  • [2] Implicit 3D Orientation Learning for 6D Object Detection from RGB Images
    Sundermeyer, Martin
    Marton, Zoltan-Csaba
    Durner, Maximilian
    Brucker, Manuel
    Triebel, Rudolph
    COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 712 - 729
  • [3] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [4] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [5] Towards Learning 3d Object Detection and 6d Pose Estimation from Synthetic Data
    Rudorfer, Martin
    Neumann, Lukas
    Krueger, Joerg
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 1540 - 1543
  • [6] Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation
    Kehl, Wadim
    Milletari, Fausto
    Tombari, Federico
    Ilic, Slobodan
    Navab, Nassir
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 205 - 220
  • [7] A Survey of 6D Object Detection Based on 3D Models for Industrial Applications
    Gorschlueter, Felix
    Rojtberg, Pavel
    Poellabauer, Thomas
    JOURNAL OF IMAGING, 2022, 8 (03)
  • [8] Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud
    Guo, Jianwei
    Xing, Xuejun
    Quan, Weize
    Yan, Dong-Ming
    Gu, Qingyi
    Liu, Yang
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5072 - 5084
  • [9] Edge Enhanced Implicit Orientation Learning With Geometric Prior for 6D Pose Estimation
    Wen, Yilin
    Pan, Hao
    Yang, Lei
    Wang, Wenping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4931 - 4938
  • [10] 6D Interpretation of 3D Gravity
    Herfray, Yannick
    Krasnov, Kirill
    Scarinci, Carlos
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (04)