Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection

被引:0
|
作者
Martin Sundermeyer
Zoltan-Csaba Marton
Maximilian Durner
Rudolph Triebel
机构
[1] German Aerospace Center (DLR),
[2] Technical University of Munich,undefined
来源
关键词
6D object detection; Pose estimation; Domain randomization; Autoencoder; Synthetic data; Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a real-time RGB-based pipeline for object detection and 6D pose estimation. Our novel 3D orientation estimation is based on a variant of the Denoising Autoencoder that is trained on simulated views of a 3D model using Domain Randomization. This so-called Augmented Autoencoder has several advantages over existing methods: It does not require real, pose-annotated training data, generalizes to various test sensors and inherently handles object and view symmetries. Instead of learning an explicit mapping from input images to object poses, it provides an implicit representation of object orientations defined by samples in a latent space. Our pipeline achieves state-of-the-art performance on the T-LESS dataset both in the RGB and RGB-D domain. We also evaluate on the LineMOD dataset where we can compete with other synthetically trained approaches. We further increase performance by correcting 3D orientation estimates to account for perspective errors when the object deviates from the image center and show extended results. Our code is available here https://github.com/DLR-RM/AugmentedAutoencoder.
引用
收藏
页码:714 / 729
页数:15
相关论文
共 50 条
  • [31] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [32] Determining the object orientation in a 3D space
    V. V. Trushkov
    V. M. Khachumov
    Optoelectronics, Instrumentation and Data Processing, 2008, 44 (3) : 245 - 248
  • [33] Determining the Object Orientation in a 3D Space
    Trushkov, V. V.
    Khachumov, V. M.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2008, 44 (03) : 245 - 248
  • [34] Research on Model-Free 6D Object Pose Estimation Based on Vision 3D Matching
    Chen, Yan
    Yi, Pengfei
    Guo, Yujie
    Liu, Rui
    Dong, Jing
    Zhou, Dongsheng
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,
  • [35] 6D Object Pose Estimation using Few-Shot Instance Segmentation and 3D Matching
    Li, Wanyi
    Sun, Jia
    Luo, Yongkang
    Wang, Peng
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1071 - 1077
  • [36] Detection of substances in food with 3D convolutional autoencoders
    Detektion von Stoffen in Lebensmitteln mit Hilfe von 3D-Faltungsautoencodern
    Anastasiadis, Johannes (anastasiadis@kit.edu), 2018, De Gruyter Oldenbourg (85):
  • [37] 6D pose estimation and 3D object reconstruction from 2D shape for robotic grasping of objects
    Wolnitza, Marcell
    Kaya, Osman
    Kulvicius, Tomas
    Woergoetter, Florentin
    Dellen, Babette
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 67 - 71
  • [38] Detection of substances in food with 3D convolutional autoencoders
    Anastasiadis, Johannes
    Leon, Fernando Puente
    TM-TECHNISCHES MESSEN, 2018, 85 : S38 - S44
  • [39] A Probabilistic Framework for Stereo-Vision Based 3D Object Search with 6D Pose Estimation
    Ma, Jeremy
    Burdick, Joel W.
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 2036 - 2042
  • [40] DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation
    Wen, Yilin
    Li, Xiangyu
    Pan, Hao
    Yang, Lei
    Wang, Zheng
    Komura, Taku
    Wang, Wenping
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 404 - 421