Comparison Theorems for the Eigenvalue Gap of Schrödinger Operators on the Real Line

被引:0
|
作者
Duo-Yuan Chen
Min-Jei Huang
机构
[1] National Tsing Hua University,Department of Mathematics
来源
Annales Henri Poincaré | 2012年 / 13卷
关键词
Harmonic Oscillator; Trial Function; Anharmonic Oscillator; Modern Mathematical Physic; Eigenvalue Ratio;
D O I
暂无
中图分类号
学科分类号
摘要
We establish several comparison results on the eigenvalue gap for Schrödinger operators on the real line. The potentials we consider here include symmetric single-well, double-well, Uc-class, Mc-class as well as their perturbations. Some related results on the eigenvalue ratio are also discussed.
引用
收藏
页码:85 / 101
页数:16
相关论文
共 50 条
  • [41] Kernel estimates for Schrödinger operators
    G. Metafune
    D. Pallara
    A. Rhandi
    Journal of Evolution Equations, 2006, 6 : 433 - 457
  • [42] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    Mathematische Annalen, 1998, 312 : 659 - 716
  • [43] On Learning Rates and Schrödinger Operators
    Shi, Bin
    Su, Weijie J.
    Jordan, Michael I.
    Journal of Machine Learning Research, 2023, 24
  • [44] Schrödinger operators periodic in octants
    Evgeny Korotyaev
    Jacob Schach MØller
    Letters in Mathematical Physics, 2021, 111
  • [45] One-Dimensional Finite-Gap Schrödinger Operators As a Limit of Commuting Difference Operators
    G. S. Mauleshova
    A. E. Mironov
    Doklady Mathematics, 2023, 108 : 312 - 315
  • [46] Bounds for Schrödinger Operators on the Half-Line Perturbed by Dissipative Barriers
    Alexei Stepanenko
    Integral Equations and Operator Theory, 2021, 93
  • [47] Two Theorems on Convergence of Schrödinger Means
    Per Sjölin
    Journal of Fourier Analysis and Applications, 2019, 25 : 1708 - 1716
  • [48] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854
  • [49] Liouville type theorems for Schrdinger systems
    ZHUO Ran
    LI Feng Quan
    ScienceChina(Mathematics), 2015, 58 (01) : 179 - 196
  • [50] Liouville type theorems for Schrödinger systems
    Ran Zhuo
    FengQuan Li
    Science China Mathematics, 2015, 58 : 179 - 196