Comparison Theorems for the Eigenvalue Gap of Schrödinger Operators on the Real Line

被引:0
|
作者
Duo-Yuan Chen
Min-Jei Huang
机构
[1] National Tsing Hua University,Department of Mathematics
来源
Annales Henri Poincaré | 2012年 / 13卷
关键词
Harmonic Oscillator; Trial Function; Anharmonic Oscillator; Modern Mathematical Physic; Eigenvalue Ratio;
D O I
暂无
中图分类号
学科分类号
摘要
We establish several comparison results on the eigenvalue gap for Schrödinger operators on the real line. The potentials we consider here include symmetric single-well, double-well, Uc-class, Mc-class as well as their perturbations. Some related results on the eigenvalue ratio are also discussed.
引用
收藏
页码:85 / 101
页数:16
相关论文
共 50 条
  • [31] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [32] Eigenvalue Splitting of Polynomial Order for a System of Schrödinger Operators with Energy-Level Crossing
    Marouane Assal
    Setsuro Fujiié
    Communications in Mathematical Physics, 2021, 386 : 1519 - 1550
  • [33] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [34] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [35] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [36] Eigenvalue Gap Theorems for a Class of Nonsymmetric Elliptic Operators on Convex Domains
    Wolfson, Jon
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (04) : 601 - 628
  • [37] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    Annales Henri Poincaré, 2011, 12 : 397 - 418
  • [38] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [39] Resonance Theory for Schrödinger Operators
    O. Costin
    A. Soffer
    Communications in Mathematical Physics, 2001, 224 : 133 - 152
  • [40] Spectral identities for Schrödinger operators
    Guliyev, Namig J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,