Comparison Theorems for the Eigenvalue Gap of Schrödinger Operators on the Real Line

被引:0
|
作者
Duo-Yuan Chen
Min-Jei Huang
机构
[1] National Tsing Hua University,Department of Mathematics
来源
Annales Henri Poincaré | 2012年 / 13卷
关键词
Harmonic Oscillator; Trial Function; Anharmonic Oscillator; Modern Mathematical Physic; Eigenvalue Ratio;
D O I
暂无
中图分类号
学科分类号
摘要
We establish several comparison results on the eigenvalue gap for Schrödinger operators on the real line. The potentials we consider here include symmetric single-well, double-well, Uc-class, Mc-class as well as their perturbations. Some related results on the eigenvalue ratio are also discussed.
引用
收藏
页码:85 / 101
页数:16
相关论文
共 50 条
  • [21] Eigenvalue Bounds for Perturbations of Schrödinger Operators and Jacobi Matrices With Regular Ground States
    Rupert L. Frank
    Barry Simon
    Timo Weidl
    Communications in Mathematical Physics, 2008, 282 : 199 - 208
  • [22] Eigenvalue Order Statistics for Random Schrödinger Operators with Doubly-Exponential Tails
    M. Biskup
    W. König
    Communications in Mathematical Physics, 2016, 341 : 179 - 218
  • [23] On Schrödinger Operators with Inverse Square Potentials on the Half-Line
    Jan Dereziński
    Serge Richard
    Annales Henri Poincaré, 2017, 18 : 869 - 928
  • [24] The Wk, p-Continuity of the Schrödinger Wave Operators on the Line
    Ricardo Weder
    Communications in Mathematical Physics, 1999, 208 : 507 - 520
  • [25] Trace formulas for Schrödinger operators with complex potentials on a half line
    Evgeny Korotyaev
    Letters in Mathematical Physics, 2020, 110 : 1 - 20
  • [26] Numerical Computations of Nonlocal Schrödinger Equations on the Real Line
    Yonggui Yan
    Jiwei Zhang
    Chunxiong Zheng
    Communications on Applied Mathematics and Computation, 2020, 2 : 241 - 260
  • [27] Lower bounds on the spectral gap of one-dimensional Schrödinger operators
    Joachim Kerner
    Archiv der Mathematik, 2022, 119 : 613 - 622
  • [28] On the spectral gap of one-dimensional Schrödinger operators on large intervals
    Kerner, Joachim
    Taeufer, Matthias
    ARCHIV DER MATHEMATIK, 2024, 123 (06) : 641 - 652
  • [29] Eigenvalue Inequalities in Terms of Schatten Norm Bounds on Differences of Semigroups, and Application to Schrödinger Operators
    Michael Demuth
    Guy Katriel
    Annales Henri Poincaré, 2008, 9 : 817 - 834
  • [30] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28