Liouville type theorems for Schrödinger systems

被引:0
|
作者
Ran Zhuo
FengQuan Li
机构
[1] Yeshiva University,Department of Mathematical Sciences
[2] Dalian University of Technology,School of Mathematical Sciences
来源
Science China Mathematics | 2015年 / 58卷
关键词
Schrödinger systems; poly-harmonic operators; Dirichlet boundary conditions; method of moving planes in integral forms; Kelvin transforms; monotonicity; rotational symmetry; non-existence; 31A10; 35B45; 35B53; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
We study positive solutions to the following higher order Schrödinger system with Dirichlet boundary conditions on a half space: (0.1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{gathered} ( - \Delta )^{\tfrac{\alpha } {2}} u(x) = u^{\beta _1 } (x)v^{\gamma _1 } (x), in R_ + ^n , \hfill \\ ( - \Delta )^{\tfrac{\alpha } {2}} u(x) = u^{\beta _2 } (x)v^{\gamma _2 } (x), in R_ + ^n , \hfill \\ u = \tfrac{{\partial u}} {{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha } {2} - 1} u}} {{\partial x_n \tfrac{\alpha } {2} - 1}} = 0, on \partial R_ + ^n , \hfill \\ v = \tfrac{{\partial v}} {{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha } {2} - 1} v}} {{\partial x_n \tfrac{\alpha } {2} - 1}} = 0, on \partial R_ + ^n , \hfill \\ \end{gathered} \right.$$\end{document} where α is any even number between 0 and n. This PDE system is closely related to the integral system (0.2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}c} {u(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _1 } (y)v^{\gamma _1 } (y)dy,} } \\ {v(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _2 } (y)v^{\gamma _2 } (y)dy,} } \\ \end{array} } \right.$$\end{document} where G is the corresponding Green’s function on the half space. More precisely, we show that every solution to (0.2) satisfies (0.1), and we believe that the converse is also true. We establish a Liouville type theorem — the non-existence of positive solutions to (0.2) under a very weak condition that u and v are only locally integrable. Some new ideas are involved in the proof, which can be applied to a system of more equations.
引用
收藏
页码:179 / 196
页数:17
相关论文
共 50 条