We study positive solutions to the following higher order Schrödinger system with Dirichlet boundary conditions on a half space: (0.1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ \begin{gathered}
( - \Delta )^{\tfrac{\alpha }
{2}} u(x) = u^{\beta _1 } (x)v^{\gamma _1 } (x), in R_ + ^n , \hfill \\
( - \Delta )^{\tfrac{\alpha }
{2}} u(x) = u^{\beta _2 } (x)v^{\gamma _2 } (x), in R_ + ^n , \hfill \\
u = \tfrac{{\partial u}}
{{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha }
{2} - 1} u}}
{{\partial x_n \tfrac{\alpha }
{2} - 1}} = 0, on \partial R_ + ^n , \hfill \\
v = \tfrac{{\partial v}}
{{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha }
{2} - 1} v}}
{{\partial x_n \tfrac{\alpha }
{2} - 1}} = 0, on \partial R_ + ^n , \hfill \\
\end{gathered} \right.$$\end{document} where α is any even number between 0 and n. This PDE system is closely related to the integral system (0.2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ {\begin{array}{*{20}c}
{u(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _1 } (y)v^{\gamma _1 } (y)dy,} } \\
{v(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _2 } (y)v^{\gamma _2 } (y)dy,} } \\
\end{array} } \right.$$\end{document} where G is the corresponding Green’s function on the half space. More precisely, we show that every solution to (0.2) satisfies (0.1), and we believe that the converse is also true. We establish a Liouville type theorem — the non-existence of positive solutions to (0.2) under a very weak condition that u and v are only locally integrable. Some new ideas are involved in the proof, which can be applied to a system of more equations.