Liouville type theorems for Schrödinger systems

被引:0
|
作者
Ran Zhuo
FengQuan Li
机构
[1] Yeshiva University,Department of Mathematical Sciences
[2] Dalian University of Technology,School of Mathematical Sciences
来源
Science China Mathematics | 2015年 / 58卷
关键词
Schrödinger systems; poly-harmonic operators; Dirichlet boundary conditions; method of moving planes in integral forms; Kelvin transforms; monotonicity; rotational symmetry; non-existence; 31A10; 35B45; 35B53; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
We study positive solutions to the following higher order Schrödinger system with Dirichlet boundary conditions on a half space: (0.1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{gathered} ( - \Delta )^{\tfrac{\alpha } {2}} u(x) = u^{\beta _1 } (x)v^{\gamma _1 } (x), in R_ + ^n , \hfill \\ ( - \Delta )^{\tfrac{\alpha } {2}} u(x) = u^{\beta _2 } (x)v^{\gamma _2 } (x), in R_ + ^n , \hfill \\ u = \tfrac{{\partial u}} {{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha } {2} - 1} u}} {{\partial x_n \tfrac{\alpha } {2} - 1}} = 0, on \partial R_ + ^n , \hfill \\ v = \tfrac{{\partial v}} {{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha } {2} - 1} v}} {{\partial x_n \tfrac{\alpha } {2} - 1}} = 0, on \partial R_ + ^n , \hfill \\ \end{gathered} \right.$$\end{document} where α is any even number between 0 and n. This PDE system is closely related to the integral system (0.2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}c} {u(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _1 } (y)v^{\gamma _1 } (y)dy,} } \\ {v(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _2 } (y)v^{\gamma _2 } (y)dy,} } \\ \end{array} } \right.$$\end{document} where G is the corresponding Green’s function on the half space. More precisely, we show that every solution to (0.2) satisfies (0.1), and we believe that the converse is also true. We establish a Liouville type theorem — the non-existence of positive solutions to (0.2) under a very weak condition that u and v are only locally integrable. Some new ideas are involved in the proof, which can be applied to a system of more equations.
引用
收藏
页码:179 / 196
页数:17
相关论文
共 50 条
  • [41] A generalized Schrödinger formalism as a Hilbert space representation of a generalized Liouville equation
    R K Varma
    Pramana, 1997, 49 : 17 - 31
  • [42] Schrödinger equation for Sturm-Liouville operator with singular propagation and potential
    Ruzhansky, Michael
    Yeskermessuly, Alibek
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2025, 44 (1-2): : 97 - 120
  • [43] 非线性Schr?dinger系统整体解的Liouville定理
    吴千秋
    计婷
    胡良根
    宁波大学学报(理工版), 2019, 32 (01) : 89 - 92
  • [44] 稳态Schrdinger方程解的Liouville型定理
    乔蕾
    数学年刊A辑(中文版), 2016, 37 (03) : 303 - 310
  • [45] Existence theorems for the Schrödinger equation involving a critical Sobolev exponent
    J. Chabrowski
    J. Yang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 276 - 293
  • [46] Liouville-type theorems for fractional Hardy–Hénon systems
    Kui Li
    Meng Yu
    Zhitao Zhang
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [47] Liouville type theorems for systems of elliptic differential inequalities on Riemannian manifolds
    Xu, Fanheng
    Wang, Lifei
    Sun, Yuhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 426 - 446
  • [48] On Liouville type theorems for the stationary MHD and Hall-MHD systems
    Chae, Dongho
    Wolf, Jorg
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 : 233 - 248
  • [49] LIOUVILLE TYPE THEOREMS FOR FRACTIONAL AND HIGHER-ORDER FRACTIONAL SYSTEMS
    Cao, Daomin
    Qin, Guolin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (05) : 2269 - 2283
  • [50] Lp estimates for the Schrödinger type operators
    Yu Liu
    Ji-zheng Huang
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 412 - 424