Signless Laplacian spectral characterization of some disjoint union of graphs

被引:0
|
作者
B. R. Rakshith
机构
[1] Vidyavardhaka College of Engineering,Department of Mathematics
关键词
Laplacian spectrum; Signless Laplacian spectrum; Cospectral graphs; Spectral characterization; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacency matrix of a simple and undirected graph G is denoted by A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(G)$$\end{document} and DG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_{G}$$\end{document} is the degree diagonal matrix of G. The Laplacian matrix of G is L(G)=DG-A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(G)={\mathcal {D}}_{G}-{\mathcal {A}}(G)$$\end{document} and the signless Laplacian matrix of G is Q(G)=DG+A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}(G)={\mathcal {D}}_{G}+{\mathcal {A}}(G) $$\end{document}. The star graph of order n is denoted by Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document}. The double starlike treeGp,n,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,n,q}$$\end{document} is obtained by attaching p pendant vertices to one pendant vertex of the path Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} and q pendant vertices to the other pendant vertex of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document}. In this paper, we first investigate the disjoint union of double starlike graphs Gp,2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,2,q}$$\end{document} and the star graphs Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document} for Laplacian (signless) spectral characterization. Also, the signless Laplacian spectral determination of the disjoint union of odd unicyclic graphs and star graphs is studied. Abdian et al. [AKCE Int. J. Graphs Combin. (2018) https://doi.org/10.1016/j.akcej.2018.06.009] proved that if G is a DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} connected non-bipartite graph with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} vertices, then G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document}. Here we give a counterexample for the claim and also we study the graph G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} for signless Laplacian charcterization when G has at least ((n-2)(n-3)+10)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((n-2)(n-3)+10)/2$$\end{document} edges and s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}. It is shown that the graph Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. We also prove that the complement graph of Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>1$$\end{document} and n≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ne 3$$\end{document}.
引用
收藏
页码:233 / 245
页数:12
相关论文
共 50 条
  • [41] MAXIMA OF THE SIGNLESS LAPLACIAN SPECTRAL RADIUS FOR PLANAR GRAPHS
    Yu, Guanglong
    Wang, Jianyong
    Guo, Shu-Guang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 795 - 811
  • [42] On the signless Laplacian spectral radius of graphs with cut vertices
    Zhu, Bao-Xuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) : 928 - 933
  • [43] ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS
    Milovanovic, Emina
    Altindag, Serife Burcu Bozkurt
    Matejic, Marjan
    Milovanovic, Igor
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 499 - 511
  • [44] On the signless Laplacian and normalized signless Laplacian spreads of graphs
    Emina Milovanović
    Şerife Burcu Bozkurt Altindağ
    Marjan Matejić
    Igor Milovanović
    Czechoslovak Mathematical Journal, 2023, 73 : 499 - 511
  • [45] ON THE DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS AND DIGRAPHS
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 438 - 446
  • [46] On the maximum signless Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    ARS COMBINATORIA, 2018, 140 : 389 - 395
  • [47] The signless Laplacian spectral radius of graphs with given diameter
    Feng LiHua
    Yu GuiHai
    UTILITAS MATHEMATICA, 2010, 83 : 265 - 276
  • [48] ON THE HARMONIC INDEX AND THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02): : 299 - 307
  • [49] CHROMATIC NUMBER AND SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Oboudi, Mohammad Reza
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 327 - 334
  • [50] Signless Laplacian spectral radius and fractional matchings in graphs
    Pan, Yingui
    Li, Jianping
    Zhao, Wei
    DISCRETE MATHEMATICS, 2020, 343 (10)