ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS

被引:0
|
作者
Milovanovic, Emina [1 ]
Altindag, Serife Burcu Bozkurt [2 ]
Matejic, Marjan [3 ]
Milovanovic, Igor [3 ]
机构
[1] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18106, Serbia
[2] Karamanoglu Mehmetbey Univ, Kamil Ozdag Sci Fac, Dept Math, Karaman, Turkiye
[3] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18106, Serbia
关键词
Laplacian graph spectra; bipartite graph; spread of graph; INCIDENCE ENERGY; BOUNDS;
D O I
10.21136/CMJ.2023.0005-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E), V = {v(1), v(2), ... , v(n)}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d(1) >= d(2) >= ... >= d(n). Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The signless Laplacian of G is defined as L+ = D + A and the normalized signless Laplacian matrix as L+ = D-1/2L+D-1/2. The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as r(G) = gamma(+)(2)/gamma(+ )(n)and l(G) = gamma(+)(2) - gamma(+)(n), where gamma(+ )(1)>= gamma(+)(2) >=.. . >= gamma(+)(n) >= 0 are eigenvalues of L+. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
引用
收藏
页码:499 / 511
页数:13
相关论文
共 50 条
  • [1] On the signless Laplacian and normalized signless Laplacian spreads of graphs
    Emina Milovanović
    Şerife Burcu Bozkurt Altindağ
    Marjan Matejić
    Igor Milovanović
    Czechoslovak Mathematical Journal, 2023, 73 : 499 - 511
  • [2] On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs
    Afkhami, Mojgan
    Barati, Zahra
    Khashyarmanesh, Kazem
    RICERCHE DI MATEMATICA, 2022, 71 (02) : 349 - 365
  • [3] On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs
    Mojgan Afkhami
    Zahra Barati
    Kazem Khashyarmanesh
    Ricerche di Matematica, 2022, 71 : 349 - 365
  • [4] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [5] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 647 - 654
  • [6] Signless Laplacian and normalized Laplacian on the H-join operation of graphs
    Wu, Bao-Feng
    Lou, Yuan-Yuan
    He, Chang-Xiang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [7] Signless normalized Laplacian for hypergraphs
    Andreotti, Eleonora
    Mulas, Raffaella
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 485 - 500
  • [8] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Ji-Ming Guo
    Jianxi Li
    Wai Chee Shiu
    Czechoslovak Mathematical Journal, 2013, 63 : 701 - 720
  • [9] THE SIGNLESS LAPLACIAN SEPARATOR OF GRAPHS
    You, Zhifu
    Liu, Bolian
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 151 - 160
  • [10] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 701 - 720