ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS

被引:0
|
作者
Milovanovic, Emina [1 ]
Altindag, Serife Burcu Bozkurt [2 ]
Matejic, Marjan [3 ]
Milovanovic, Igor [3 ]
机构
[1] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18106, Serbia
[2] Karamanoglu Mehmetbey Univ, Kamil Ozdag Sci Fac, Dept Math, Karaman, Turkiye
[3] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18106, Serbia
关键词
Laplacian graph spectra; bipartite graph; spread of graph; INCIDENCE ENERGY; BOUNDS;
D O I
10.21136/CMJ.2023.0005-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E), V = {v(1), v(2), ... , v(n)}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d(1) >= d(2) >= ... >= d(n). Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The signless Laplacian of G is defined as L+ = D + A and the normalized signless Laplacian matrix as L+ = D-1/2L+D-1/2. The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as r(G) = gamma(+)(2)/gamma(+ )(n)and l(G) = gamma(+)(2) - gamma(+)(n), where gamma(+ )(1)>= gamma(+)(2) >=.. . >= gamma(+)(n) >= 0 are eigenvalues of L+. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
引用
收藏
页码:499 / 511
页数:13
相关论文
共 50 条
  • [31] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [32] ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS
    Pirzada, S.
    Ganie, H. A.
    Alghamdi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 407 - 417
  • [33] On the smallest signless Laplacian eigenvalue of graphs
    Oboudi, Mohammad Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 637 : 138 - 156
  • [34] (Signless) Laplacian Borderenergetic Graphs and the Join of Graphs
    Deng, Bo
    Li, Xueliang
    Li, Yalan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 80 (02) : 449 - 457
  • [35] Signless Laplacian eigenvalues and circumference of graphs
    Wang, JianFeng
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1610 - 1617
  • [36] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621
  • [37] On (distance) signless Laplacian spectra of graphs
    Rakshith, B. R.
    Das, Kinkar Chandra
    Sriraj, M. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 67 (1-2) : 23 - 40
  • [38] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [39] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [40] Some new inequalities on the normalized signless Laplacian resolvent energy of graphs
    Bozkurt Altindag, S. B.
    Matejic, M.
    Milovanovic, I.
    Milovanovic, E.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (10)