On the signless Laplacian and normalized signless Laplacian spreads of graphs

被引:0
|
作者
Emina Milovanović
Şerife Burcu Bozkurt Altindağ
Marjan Matejić
Igor Milovanović
机构
[1] University of Niš,Faculty of Electronic Engineering
[2] Karamanoğlu Mehmetbey University,Kamil Özdağ Science Faculty, Department of Mathematics
来源
关键词
Laplacian graph spectra; bipartite graph; spread of graph; 15A18; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V, E), V = {v1, v2, …, vn}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≽ d2 ≽ … ≽ dn. Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The signless Laplacian of G is defined as L+ = D + A and the normalized signless Laplacian matrix as r(G)=γ2+/γn+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\left( G \right) = \gamma _2^ + /\gamma _n^ + $$\end{document}. The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as l(G)=γ2+−γn+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\left( G \right) = \gamma _2^ + - \gamma _n^ + $$\end{document}, where γ1+⩾γ2+⩾...⩾γn+⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _1^ + \geqslant \gamma _2^ + \geqslant \ldots \geqslant \gamma _n^ + \geqslant 0$$\end{document} are eigenvalues of ℒ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal L}^ + }$$\end{document}. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
引用
收藏
页码:499 / 511
页数:12
相关论文
共 50 条
  • [1] ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS
    Milovanovic, Emina
    Altindag, Serife Burcu Bozkurt
    Matejic, Marjan
    Milovanovic, Igor
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 499 - 511
  • [2] On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs
    Afkhami, Mojgan
    Barati, Zahra
    Khashyarmanesh, Kazem
    [J]. RICERCHE DI MATEMATICA, 2022, 71 (02) : 349 - 365
  • [3] On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs
    Mojgan Afkhami
    Zahra Barati
    Kazem Khashyarmanesh
    [J]. Ricerche di Matematica, 2022, 71 : 349 - 365
  • [4] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    [J]. TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [5] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    [J]. Journal of Mathematical Research with Applications, 2014, 34 (06) : 647 - 654
  • [6] Signless Laplacian and normalized Laplacian on the H-join operation of graphs
    Wu, Bao-Feng
    Lou, Yuan-Yuan
    He, Chang-Xiang
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [7] Signless normalized Laplacian for hypergraphs
    Andreotti, Eleonora
    Mulas, Raffaella
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 485 - 500
  • [8] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Ji-Ming Guo
    Jianxi Li
    Wai Chee Shiu
    [J]. Czechoslovak Mathematical Journal, 2013, 63 : 701 - 720
  • [9] THE SIGNLESS LAPLACIAN SEPARATOR OF GRAPHS
    You, Zhifu
    Liu, Bolian
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 151 - 160
  • [10] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 701 - 720