Signless Laplacian spectral characterization of some disjoint union of graphs

被引:0
|
作者
B. R. Rakshith
机构
[1] Vidyavardhaka College of Engineering,Department of Mathematics
关键词
Laplacian spectrum; Signless Laplacian spectrum; Cospectral graphs; Spectral characterization; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacency matrix of a simple and undirected graph G is denoted by A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(G)$$\end{document} and DG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_{G}$$\end{document} is the degree diagonal matrix of G. The Laplacian matrix of G is L(G)=DG-A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(G)={\mathcal {D}}_{G}-{\mathcal {A}}(G)$$\end{document} and the signless Laplacian matrix of G is Q(G)=DG+A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}(G)={\mathcal {D}}_{G}+{\mathcal {A}}(G) $$\end{document}. The star graph of order n is denoted by Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document}. The double starlike treeGp,n,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,n,q}$$\end{document} is obtained by attaching p pendant vertices to one pendant vertex of the path Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} and q pendant vertices to the other pendant vertex of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document}. In this paper, we first investigate the disjoint union of double starlike graphs Gp,2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,2,q}$$\end{document} and the star graphs Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document} for Laplacian (signless) spectral characterization. Also, the signless Laplacian spectral determination of the disjoint union of odd unicyclic graphs and star graphs is studied. Abdian et al. [AKCE Int. J. Graphs Combin. (2018) https://doi.org/10.1016/j.akcej.2018.06.009] proved that if G is a DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} connected non-bipartite graph with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} vertices, then G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document}. Here we give a counterexample for the claim and also we study the graph G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} for signless Laplacian charcterization when G has at least ((n-2)(n-3)+10)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((n-2)(n-3)+10)/2$$\end{document} edges and s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}. It is shown that the graph Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. We also prove that the complement graph of Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>1$$\end{document} and n≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ne 3$$\end{document}.
引用
收藏
页码:233 / 245
页数:12
相关论文
共 50 条
  • [31] On the signless Laplacian spectral characterization of the line graphs of T-shape trees
    Wang, Guoping
    Guo, Guangquan
    Min, Li
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (02) : 311 - 325
  • [32] The signless Laplacian spectral radius of graphs without trees
    Chen, Ming-Zhu
    Li, Zhao-Ming
    Zhang, Xiao-Dong
    arXiv, 2022,
  • [33] Spanning trees and signless Laplacian spectral radius in graphs
    Wang, Sufang
    Zhang, Wei
    arXiv,
  • [34] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687
  • [35] The signless Laplacian spectral radius of graphs with no intersecting triangles
    Zhao, Yanhua
    Huang, Xueyi
    Guo, Hangtian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 618 : 12 - 21
  • [36] The Randic index and signless Laplacian spectral radius of graphs
    Ning, Bo
    Peng, Xing
    DISCRETE MATHEMATICS, 2019, 342 (03) : 643 - 653
  • [37] Ordering of the signless Laplacian spectral radii of unicyclic graphs
    Wei, Fi-Yi
    Liu, Muhuo
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 255 - 264
  • [38] On the Distance Signless Laplacian Spectral Radius of Bicyclic Graphs
    Nannan XU
    Aimei YU
    Journal of Mathematical Research with Applications, 2023, 43 (03) : 289 - 302
  • [39] On the signless Laplacian spectral determination of the join of regular graphs
    Xu, Lizhen
    He, Changxiang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (04)
  • [40] The Signless Laplacian Spectral Radii and Spread of Bicyclic Graphs
    Fengmei SUN
    Ligong WANG
    Journal of Mathematical Research with Applications, 2014, 34 (02) : 127 - 136