Diagonals of injective tensor products of Banach lattices with bases

被引:0
|
作者
Donghai Ji
Byunghoon Lee
Qingying Bu
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Tuskegee University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2017年 / 21卷
关键词
Positive tensor product; Diagonal tensor; Unconditional basis; 46M05; 46B28; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a Banach lattice with a 1-unconditional basis {ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i: i \in \mathbb {N}\}$$\end{document}. Denote by Δ(⊗ˇn,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,\epsilon }E)$$\end{document} (resp. Δ(⊗ˇn,s,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,\epsilon }E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach space tensor product, and denote by Δ(⊗ˇn,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,|\epsilon |}E)$$\end{document} (resp. Δ(⊗ˇn,s,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,|\epsilon |}E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic. We also show that the tensor diagonal {ei⊗⋯⊗ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i\otimes \cdots \otimes e_i: i \in \mathbb {N}\}$$\end{document} is a 1-unconditional basic sequence in both ⊗ˇn,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,\epsilon }E$$\end{document} and ⊗ˇn,s,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,s,\epsilon }E$$\end{document}.
引用
收藏
页码:975 / 988
页数:13
相关论文
共 50 条
  • [41] Boolean-Valued Analysis and Injective Banach Lattices
    Kusraev, A. G.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 341 - 343
  • [42] Boolean-valued analysis and injective Banach lattices
    A. G. Kusraev
    Doklady Mathematics, 2012, 85 : 341 - 343
  • [43] REFLEXIVITY AND THE GROTHENDIECK PROPERTY FOR POSITIVE TENSOR PRODUCTS OF BANACH LATTICES-II
    Bu, Qingying
    Craddock, Michelle
    Ji, Donghai
    QUAESTIONES MATHEMATICAE, 2009, 32 (03) : 339 - 350
  • [44] Reflexivity and the Grothendieck property for positive tensor products of Banach lattices-I
    Donghai Ji
    Michelle Craddock
    Qingying Bu
    Positivity, 2010, 14 : 59 - 68
  • [45] Reflexivity and the Grothendieck property for positive tensor products of Banach lattices-I
    Ji, Donghai
    Craddock, Michelle
    Bu, Qingying
    POSITIVITY, 2010, 14 (01) : 59 - 68
  • [46] Some geometric properties inherited by the positive tensor products of atomic Banach lattices
    Bu, Qingying
    Wong, Ngai-Ching
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03): : 199 - 213
  • [47] Complexification of the projective and injective tensor products
    van Zyl, Gusti
    STUDIA MATHEMATICA, 2008, 189 (02) : 105 - 112
  • [48] ON TENSOR PRODUCTS OF INJECTIVE OPERATOR SPACES
    Amini, M.
    Medghalchi, A. R.
    Nikpey, H.
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (04): : 1147 - 1163
  • [49] Some properties of the injective tensor product of Banach spaces
    Xue, Xiao Ping
    Li, Yong Jin
    Bu, Qing Ying
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (09) : 1697 - 1706
  • [50] Order Schauder bases in Banach lattices
    Gumenchuk, Anna
    Karlova, Olena
    Popov, Mikhail
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (02) : 536 - 550