Diagonals of injective tensor products of Banach lattices with bases

被引:0
|
作者
Donghai Ji
Byunghoon Lee
Qingying Bu
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Tuskegee University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2017年 / 21卷
关键词
Positive tensor product; Diagonal tensor; Unconditional basis; 46M05; 46B28; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a Banach lattice with a 1-unconditional basis {ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i: i \in \mathbb {N}\}$$\end{document}. Denote by Δ(⊗ˇn,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,\epsilon }E)$$\end{document} (resp. Δ(⊗ˇn,s,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,\epsilon }E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach space tensor product, and denote by Δ(⊗ˇn,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,|\epsilon |}E)$$\end{document} (resp. Δ(⊗ˇn,s,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,|\epsilon |}E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic. We also show that the tensor diagonal {ei⊗⋯⊗ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i\otimes \cdots \otimes e_i: i \in \mathbb {N}\}$$\end{document} is a 1-unconditional basic sequence in both ⊗ˇn,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,\epsilon }E$$\end{document} and ⊗ˇn,s,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,s,\epsilon }E$$\end{document}.
引用
收藏
页码:975 / 988
页数:13
相关论文
共 50 条