Diagonals of injective tensor products of Banach lattices with bases

被引:0
|
作者
Donghai Ji
Byunghoon Lee
Qingying Bu
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Tuskegee University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2017年 / 21卷
关键词
Positive tensor product; Diagonal tensor; Unconditional basis; 46M05; 46B28; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a Banach lattice with a 1-unconditional basis {ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i: i \in \mathbb {N}\}$$\end{document}. Denote by Δ(⊗ˇn,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,\epsilon }E)$$\end{document} (resp. Δ(⊗ˇn,s,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,\epsilon }E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach space tensor product, and denote by Δ(⊗ˇn,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,|\epsilon |}E)$$\end{document} (resp. Δ(⊗ˇn,s,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,|\epsilon |}E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic. We also show that the tensor diagonal {ei⊗⋯⊗ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i\otimes \cdots \otimes e_i: i \in \mathbb {N}\}$$\end{document} is a 1-unconditional basic sequence in both ⊗ˇn,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,\epsilon }E$$\end{document} and ⊗ˇn,s,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,s,\epsilon }E$$\end{document}.
引用
收藏
页码:975 / 988
页数:13
相关论文
共 50 条
  • [11] Bounded variation and tensor products of Banach lattices
    Buskes, G
    Van Rooij, A
    POSITIVITY, 2003, 7 (1-2) : 47 - 59
  • [12] Bounded Variation and Tensor Products of Banach Lattices
    Gerard Buskes
    Arnoud van Rooij
    Positivity, 2003, 7 : 47 - 59
  • [13] Fremlin tensor products of concavifications of Banach lattices
    Vladimir G. Troitsky
    Omid Zabeti
    Positivity, 2014, 18 : 191 - 200
  • [14] ON TENSOR-PRODUCTS OF BANACH-LATTICES
    KAIJSER, S
    MONATSHEFTE FUR MATHEMATIK, 1981, 92 (01): : 1 - 17
  • [15] OPERATORS ON INJECTIVE TENSOR-PRODUCTS OF BANACH-SPACES
    SAAB, E
    SAAB, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (12): : 789 - 792
  • [16] INJECTIVE BANACH-LATTICES
    HAYDON, R
    MATHEMATISCHE ZEITSCHRIFT, 1977, 156 (01) : 19 - 47
  • [17] Classification of injective banach lattices
    A. G. Kusraev
    Doklady Mathematics, 2013, 88 : 630 - 633
  • [18] Classification of injective banach lattices
    Kusraev, A. G.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 630 - 633
  • [19] INJECTIVE BANACH LATTICES: A SURVEY
    Kusraev, A. G.
    EURASIAN MATHEMATICAL JOURNAL, 2014, 5 (03): : 58 - 79
  • [20] The Radon–Nikodym Property for Tensor Products of Banach Lattices
    Qingying Bu
    Gerard Buskes
    Positivity, 2006, 10 : 365 - 390