ON TENSOR PRODUCTS OF INJECTIVE OPERATOR SPACES

被引:0
|
作者
Amini, M. [1 ,2 ]
Medghalchi, A. R. [3 ]
Nikpey, H. [4 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Math, Tehran 14115134, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran 193955746, Iran
[3] Kharazmi Univ, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran
[4] Shahid Rajaei Teacher Training Univ, Dept Math, Tehran 16785136, Iran
来源
HOUSTON JOURNAL OF MATHEMATICS | 2017年 / 43卷 / 04期
关键词
Operator space; injective operator space; injective envelope; injective tensor product; Haagerup tensor product; column and row Hilbert spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an infinite dimensional injective operator space V has an in finite dimensional operator subspace, completely isometric to the row or column Hilbert spaces or l(infinity). When the third case does not happen, we characterize V as a finite direct sum of bounded operators B (H, K) with H or K finite dimensional. We characterize injective operator spaces V and W for which the spacial (injective) tensor product V (sic) W is injective. We give a similar characterization for injectivity of the Haagerup tensor product of injective operator spaces.
引用
收藏
页码:1147 / 1163
页数:17
相关论文
共 50 条
  • [1] INJECTIVE TENSOR PRODUCTS OF SIDON SPACES
    LUST, F
    [J]. COLLOQUIUM MATHEMATICUM, 1975, 32 (02) : 285 - 289
  • [2] Grothendieck spaces and duals of injective tensor products
    Domanski, P
    Lindstrom, M
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 617 - 626
  • [3] ON POSITIVE INJECTIVE TENSOR PRODUCTS BEING GROTHENDIECK SPACES
    Zhang, Shaoyong
    Gu, Zhaohui
    Li, Yongjin
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1239 - 1246
  • [4] The Grothendieck property for injective tensor products of Banach spaces
    Ji, Donghai
    Xue, Xiaoping
    Bu, Qingying
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1153 - 1159
  • [5] The Grothendieck property for injective tensor products of Banach spaces
    Donghai Ji
    Xiaoping Xue
    Qingying Bu
    [J]. Czechoslovak Mathematical Journal, 2010, 60 : 1153 - 1159
  • [6] On Positive Injective Tensor Products Being Grothendieck Spaces
    Shaoyong Zhang
    Zhaohui Gu
    Yongjin Li
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1239 - 1246
  • [7] INJECTIVE TENSOR PRODUCTS OF WEAKLY SEQUENTIALLY COMPLETE SPACES
    LUST, F
    [J]. COLLOQUIUM MATHEMATICUM, 1975, 33 (02) : 289 - 290
  • [8] Biduals of tensor products in operator spaces
    Dimant, Veronica
    Fernandez-Unzueta, Maite
    [J]. STUDIA MATHEMATICA, 2015, 230 (02) : 167 - 187
  • [9] INJECTIVE TENSOR PRODUCTS AND SLICE PRODUCTS OF WEIGHTED SPACES OF CONSTANT FUNCTIONS
    BIERSTEDT, KD
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1974, 266 (NRMAA): : 121 - 131
  • [10] OPERATORS ON INJECTIVE TENSOR-PRODUCTS OF BANACH-SPACES
    SAAB, E
    SAAB, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (12): : 789 - 792