On Positive Injective Tensor Products Being Grothendieck Spaces

被引:0
|
作者
Shaoyong Zhang
Zhaohui Gu
Yongjin Li
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Guangdong University of Foreign Studies,School of Mathematics and Statistics
[3] Sun Yat-sen University,Department of Mathematics, Department of Mathematics
关键词
Banach lattice; injective tensor product; Grothendieck spaces; 46B20; 46B28;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. In this paper, we show that the positive injective tensor product λ⊗⌣|ε|X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}\over \otimes } _{\left| \varepsilon \right|}}X$$\end{document} is a Grothendieck space if and only if X is a Grothendieck space and every positive linear operator from λ* to X** is compact.
引用
收藏
页码:1239 / 1246
页数:7
相关论文
共 50 条
  • [1] ON POSITIVE INJECTIVE TENSOR PRODUCTS BEING GROTHENDIECK SPACES
    Zhang, Shaoyong
    Gu, Zhaohui
    Li, Yongjin
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1239 - 1246
  • [2] Grothendieck spaces and duals of injective tensor products
    Domanski, P
    Lindstrom, M
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 617 - 626
  • [3] The Grothendieck property for injective tensor products of Banach spaces
    Ji, Donghai
    Xue, Xiaoping
    Bu, Qingying
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1153 - 1159
  • [4] The Grothendieck property for injective tensor products of Banach spaces
    Donghai Ji
    Xiaoping Xue
    Qingying Bu
    [J]. Czechoslovak Mathematical Journal, 2010, 60 : 1153 - 1159
  • [5] The projective and injective tensor products of Lp[0,1] and X being Grothendieck spaces
    Bu, QY
    Emmanuele, G
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) : 713 - 726
  • [6] ON TENSOR PRODUCTS OF INJECTIVE OPERATOR SPACES
    Amini, M.
    Medghalchi, A. R.
    Nikpey, H.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (04): : 1147 - 1163
  • [7] INJECTIVE TENSOR PRODUCTS OF SIDON SPACES
    LUST, F
    [J]. COLLOQUIUM MATHEMATICUM, 1975, 32 (02) : 285 - 289
  • [8] INJECTIVE TENSOR PRODUCTS OF WEAKLY SEQUENTIALLY COMPLETE SPACES
    LUST, F
    [J]. COLLOQUIUM MATHEMATICUM, 1975, 33 (02) : 289 - 290
  • [9] INJECTIVE TENSOR PRODUCTS AND SLICE PRODUCTS OF WEIGHTED SPACES OF CONSTANT FUNCTIONS
    BIERSTEDT, KD
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1974, 266 (NRMAA): : 121 - 131
  • [10] OPERATORS ON INJECTIVE TENSOR-PRODUCTS OF BANACH-SPACES
    SAAB, E
    SAAB, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (12): : 789 - 792