On Positive Injective Tensor Products Being Grothendieck Spaces

被引:0
|
作者
Shaoyong Zhang
Zhaohui Gu
Yongjin Li
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Guangdong University of Foreign Studies,School of Mathematics and Statistics
[3] Sun Yat-sen University,Department of Mathematics, Department of Mathematics
关键词
Banach lattice; injective tensor product; Grothendieck spaces; 46B20; 46B28;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. In this paper, we show that the positive injective tensor product λ⊗⌣|ε|X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}\over \otimes } _{\left| \varepsilon \right|}}X$$\end{document} is a Grothendieck space if and only if X is a Grothendieck space and every positive linear operator from λ* to X** is compact.
引用
收藏
页码:1239 / 1246
页数:7
相关论文
共 50 条