Biduals of tensor products in operator spaces

被引:3
|
作者
Dimant, Veronica [1 ,2 ]
Fernandez-Unzueta, Maite [3 ]
机构
[1] Univ San Andres, Dept Matemat, Vito Dumas 284,B1644BID Victoria, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[3] Ctr Invest Matemat Cimat, AP 402, Guanajuato, Gto, Mexico
关键词
operator spaces; tensor products; bilinear mappings; POLYNOMIALS; PROPERTY; IDEALS;
D O I
10.4064/sm8292-1-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study whether the operator space V** circle times(alpha) W** can be identified with a subspace of the bidual space (V circle times(alpha) W)**, for a given operator space tensor norm. We prove that this can be done if alpha is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete is omorphism. When alpha is the projective, Haagerup or injective norm, the hypotheses can be weakened.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条