Threshold Dynamics in a Model for Zika Virus Disease with Seasonality

被引:0
|
作者
Mahmoud A. Ibrahim
Attila Dénes
机构
[1] University of Szeged,Bolyai Institute
[2] Mansoura University,Department of Mathematics, Faculty of Science
来源
关键词
Periodic epidemic model; Zika virus (ZIKV); Global stability; Uniform persistence;
D O I
暂无
中图分类号
学科分类号
摘要
We present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If R0<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 < 1,$$\end{document} then the disease-free periodic solution is globally asymptotically stable, while if R0>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 > 1,$$\end{document} then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.
引用
收藏
相关论文
共 50 条
  • [1] Threshold Dynamics in a Model for Zika Virus Disease with Seasonality
    Ibrahim, Mahmoud A.
    Denes, Attila
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (04)
  • [2] Dynamics of a Zika virus transmission model with seasonality and periodic delays
    Wang, Wei
    Zhou, Mengchen
    Zhang, Tonghua
    Feng, Zhaosheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [3] Global Dynamics of a Reaction–Diffusion Model of Zika Virus Transmission with Seasonality
    Fuxiang Li
    Xiao-Qiang Zhao
    Bulletin of Mathematical Biology, 2021, 83
  • [4] Global Dynamics of a Reaction-Diffusion Model of Zika Virus Transmission with Seasonality
    Li, Fuxiang
    Zhao, Xiao-Qiang
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (05)
  • [5] THRESHOLD DYNAMICS FOR A TUBERCULOSIS MODEL WITH SEASONALITY
    Hu, Xinli
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (01) : 111 - 122
  • [6] Threshold dynamics of a nonlocal and time-delayed West Nile virus model with seasonality
    Bai, Zhenguo
    Zhao, Xiao-Qiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
  • [7] Influence of seasonality on Zika virus transmission
    El Hajji, Miled
    Aloufi, Mohammed Faraj S.
    Alharbi, Mohammed H.
    AIMS MATHEMATICS, 2024, 9 (07): : 19361 - 19384
  • [8] Global transmission dynamics of a Zika virus model
    Cai, Yongli
    Wang, Kai
    Wang, Weiming
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 190 - 195
  • [9] A metapopulation model for zika virus disease transmission dynamics between linked communities
    Djomegni, P. M. Tchepmo
    Olupitan, G. O.
    Goufo, E. F. Dougmo
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [10] The threshold dynamics of a waterborne pathogen model with seasonality in a polluted environment
    Zhi, Shun
    Su, Youhui
    Niu, Hongtao
    Qiang, Lizhong
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (06) : 2165 - 2189