Popular Matchings in Complete Graphs

被引:0
|
作者
Ágnes Cseh
Telikepalli Kavitha
机构
[1] Institute of Economics,Centre for Economic and Regional Studies
[2] University of Potsdam,Hasso Plattner Institute
[3] Tata Institute of Fundamental Research,undefined
来源
Algorithmica | 2021年 / 83卷
关键词
Popular matching; Complexity; Stable matching;
D O I
暂无
中图分类号
学科分类号
摘要
Our input is a complete graph G on n vertices where each vertex has a strict ranking of all other vertices in G. The goal is to construct a matching in G that is popular. A matching M is popular if M does not lose a head-to-head election against any matching M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M'$$\end{document}: here each vertex casts a vote for the matching in {M,M′}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{M,M'\}$$\end{document} in which it gets a better assignment. Popular matchings need not exist in the given instance G and the popular matching problem is to decide whether one exists or not. The popular matching problem in G is easy to solve for odd n. Surprisingly, the problem becomes NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {NP}$$\end{document}-complete for even n, as we show here. This is one of the few graph theoretic problems efficiently solvable when n has one parity and NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt {NP}$$\end{document}-complete when n has the other parity.
引用
下载
收藏
页码:1493 / 1523
页数:30
相关论文
共 50 条
  • [41] LARGE MATCHINGS IN GRAPHS
    WEINSTEI.JM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A362 - A362
  • [42] LARGE MATCHINGS IN GRAPHS
    WEINSTEIN, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (06): : 1498 - 1508
  • [43] MATCHINGS IN ARBITRARY GRAPHS
    BRUALDI, RA
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 69 (MAY): : 401 - &
  • [44] Partitioning to three matchings of given size is NP-complete for bipartite graphs
    Palvolgyi, Domotor
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2014, 6 (02) : 206 - 209
  • [45] Minimal envy and popular matchings
    Kondratev, Aleksei Y.
    Nesterov, Alexander S.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 296 (03) : 776 - 787
  • [46] Popular matchings: structure and algorithms
    McDermid, Eric
    Irving, Robert W.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (03) : 339 - 358
  • [47] Weighted Random Popular Matchings
    Itoh, Toshiya
    Watanabe, Osamu
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (04) : 477 - 494
  • [48] Popular edges and dominant matchings
    Ágnes Cseh
    Telikepalli Kavitha
    Mathematical Programming, 2018, 172 : 209 - 229
  • [49] Matchings on infinite graphs
    Bordenave, Charles
    Lelarge, Marc
    Salez, Justin
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) : 183 - 208
  • [50] MATCHINGS IN COUNTABLE GRAPHS
    STEFFENS, K
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (01): : 165 - 168