Matchings on infinite graphs

被引:30
|
作者
Bordenave, Charles [1 ]
Lelarge, Marc [2 ]
Salez, Justin [3 ]
机构
[1] Univ Toulouse, Inst Math, CNRS, Toulouse, France
[2] INRIA Ecole Normale Super, Paris, France
[3] Univ Paris Diderot LPMA, Paris, France
关键词
Matching; Heilmann-Lieb Theorem; Local weak convergence; Random sparse graphs; MAXIMUM MATCHINGS; KARP-SIPSER; LIMITS;
D O I
10.1007/s00440-012-0453-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Elek and Lippner (Proc. Am. Math. Soc. 138(8), 2939-2947, 2010) showed that the convergence of a sequence of bounded-degree graphs implies the existence of a limit for the proportion of vertices covered by a maximum matching. We provide a characterization of the limiting parameter via a local recursion defined directly on the limit of the graph sequence. Interestingly, the recursion may admit multiple solutions, implying non-trivial long-range dependencies between the covered vertices. We overcome this lack of correlation decay by introducing a perturbative parameter (temperature), which we let progressively go to zero. This allows us to uniquely identify the correct solution. In the important case where the graph limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation that can be solved explicitly, leading to a new asymptotic formula that considerably extends the well-known one by Karp and Sipser for ErdAs-R,nyi random graphs.
引用
收藏
页码:183 / 208
页数:26
相关论文
共 50 条
  • [1] Matchings on infinite graphs
    Charles Bordenave
    Marc Lelarge
    Justin Salez
    Probability Theory and Related Fields, 2013, 157 : 183 - 208
  • [2] MATCHINGS IN INFINITE-GRAPHS
    AHARONI, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (01) : 87 - 125
  • [3] Strongly maximal matchings in infinite weighted graphs
    Aharoni, Ron
    Berger, Eli
    Georgakopoulos, Agelos
    Spruessel, Philipp
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [4] An infinite family of graphs with a facile count of perfect matchings
    Rosenfeld, Vladimir R.
    Klein, Douglas J.
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 210 - 214
  • [5] On matchings in graphs
    Jones, DM
    Roehm, DJ
    Schultz, M
    ARS COMBINATORIA, 1998, 50 : 65 - 79
  • [6] Mixed matchings in graphs
    Frankl, Peter
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [7] Matchings in graphs and groups
    Jarden, Adi
    Levit, Vadim E.
    Shwartz, Robert
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 216 - 224
  • [8] COUNTING MATCHINGS IN GRAPHS
    FARRELL, EJ
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1987, 324 (03): : 331 - 339
  • [9] GRAPHS WITH THE FEWEST MATCHINGS
    Keough, Lauren
    Radcliffe, Andrew J.
    COMBINATORICA, 2016, 36 (06) : 703 - 723
  • [10] Graphs with the fewest matchings
    Lauren Keough
    Andrew J. Radcliffe
    Combinatorica, 2016, 36 : 703 - 723